

Environment and Natural Resources Trust Fund

2022 Request for Proposal

General Information

Proposal ID: 2022-169

Proposal Title: ESTEP (Earth Science Teacher Education Project)

Project Manager Information

Name: Lee Schmitt Organization: Minnesota Science Teachers Association Office Telephone: (952) 435-1879 Email: lee.m.schmitt@gmail.com

Project Basic Information

Project Summary: The Earth Science Teacher Education Project (ESTEP) will provide statewide professional development for Minnesota science teachers in Environmental and Earth Science content and pedagogy to strengthen environmental education in schools.

Funds Requested: \$495,000

Proposed Project Completion: August 31 2024

LCCMR Funding Category: Environmental Education (C)

Project Location

What is the best scale for describing where your work will take place? Statewide

What is the best scale to describe the area impacted by your work? Statewide

When will the work impact occur?

During the Project and In the Future

Narrative

Describe the opportunity or problem your proposal seeks to address. Include any relevant background information.

With adoption of the new 2019 Minnesota Academic Standards in Science, all 6th grade teachers in Minnesota will now be asked to teach earth/environmental science to their students using a new phenomenon-based approach to instruction. Sixth-grade teachers are being asked to teach science subject matter in which most have little or no background. In addition, high schools will need to develop and implement new earth/environmental science courses. These high school teachers of science, especially in rural districts, will need accessible, affordable graduate-level earth/environmental science courses to procure a 9-12 Earth and Space Science teaching license.

All the quality work and successes of LCCMR-funded programs will have little longevity if we do not develop and maintain a citizenry educated in the richness, value and fragility of Minnesota's natural resources. Now is the opportune time for a statewide initiative to prioritize and strengthen environmental education in all our schools. Environmental education in Minnesota needs stimulus, focus and rejuvenation; teachers need earth/environmental science training; and the implementation of the new 2019 science standards provides the impetus.

ESTEP will meet this challenge and enhance environmental education in schools throughout Minnesota.

What is your proposed solution to the problem or opportunity discussed above? i.e. What are you seeking funding to do? You will be asked to expand on this in Activities and Milestones.

Solving this urgent need for statewide professional development in Environmental and Earth Sciences for Minnesota teachers requires an experienced team of educators and scientists. Organized and led by MnSTA, geologists from MSU-Moorhead, Mankato, St. Cloud, Winona and UM-Twin Cites will team with experienced environmental/earth science educators to provide 13 ESTEP Institutes over three summers (2022-2024) in four different regions of the state, serving up to 310 Minnesota 6th grade and high school science teachers. Five content-focused online courses offered during the same timeframe can serve another 960 teachers, together serving up to 1270 teachers and enriching earth/environmental education for an estimated 60,000 Minnesota students.

Institutes will include review of key environmental/earth science concepts addressed in the standards; the new phenomenon-based approach to teaching science; lab and fieldwork; sharing resources; and collegial planning for classroom implementation.

Understanding the detail and complexity of Earth's systems is crucial to the future of our economy and our planet, and having teachers knowledgeable and confident in Earth and Environmental Science topics is essential for quality earth/environmental education.

ESTEP will create a statewide emphasis in environment education in 6th grade and high school earth science classrooms across Minnesota.

What are the specific project outcomes as they relate to the public purpose of protection, conservation, preservation, and enhancement of the state's natural resources?

We cannot protect what we do not understand. Preserving Minnesota's natural resources cannot be accomplished without fundamental knowledge of geology, hydrology and climate taught in our schools by informed, confident science educators.

To improve the quality of earth/environmental education, ESTEP will:

1) Increase teacher content knowledge in environmental/earth sciences with direct emphasis on Minnesota's water, air, land, minerals, and climate.

- 2) Increase teacher skills in designing and facilitating phenomenon-based instruction.
- 3) Increase curriculum time devoted to environmental science and student-directed investigations.
- 4) Increase teacher confidence and enthusiasm for teaching environmental science.
- 5) Increase outdoor learning experiences.

Activities and Milestones

Activity 1: ESTEP Planning and Coordination

Activity Budget: \$2,000

Activity Description:

Objective: Design and market three teacher institutes for July/August 2022, the summers of 2023-24, and five online courses.

MnSTA and our five university partners have been discussing elements of the ESTEP program for two years. With MnSTA funding, planning will move aggressively to set specific course content that directly targets new standards benchmarks, finalizing course syllabi, determining phenomenon-based teaching strategies to be modeled, designing pre/post tests and attitudinal surveys, choosing field sites, finalizing locations and dates, and detailing/confirming logistics for the institutes and online courses. These tasks will be divided and assigned to team members with strict deadlines.

Due to the urgent need for this professional development, the ESTEP Planning Team has agreed to complete planning and waive all expenses so institutes can begin in mid-July and August of 2022. \$2000 has been budgeted for planning in years two and three.

Marketing during the 2021-22 school year will be done at no cost by MnSTA and MESTA through their listservs and webpages. District science leaders in all Minnesota schools will be contacted to direct market ESTEP to their science teachers. MnSTA will handle online registrations.

When funding becomes available on July 1, 2022, ESTEP will be ready.

Activity Milestones:

Description	Completion Date
Complete detailed agendas for summer institutes.	October 31 2021
Locations/instructors determined/confirmed for one high school and two 6th grade institutes in	November 30 2021
July/August 2022.	
Marketing and application designed, tested and posted online.	January 31 2022
Online course syllabi completed and reviewed. Online platforms ready.	March 31 2022
Logistics and participants confirmed.	May 31 2022

Activity 2: Fulfillment of ESTEP Professional Development Summer Institutes and Fall/Spring Online Courses

Activity Budget: \$484,000

Activity Description:

Objective: Deliver 13 high-quality, environmentally-focused summer professional development institutes and up to 21 fall/spring online courses over three years.

In July 2022, one cohort of 20 high school science teachers will attend an 8-day institute at MSU-Moorhead while two, 5day 6th grade teacher institutes, serving 30 teachers each, will run concurrently in two different regions of the state.

In fall 2022 and spring 2024, five online courses – Earth Essentials, EE/ES Advanced Topics, Geoscience for Elementary Teachers, Meteorology, and Astronomy – will be available for up to 240 teacher participants each year.

In early summer 2023, the first high school cohort will return to MSU-Moorhead for a final eight days of content and pedagogical training. Later that summer a new cohort of 20 high school teachers will begin their two-year program at MSU-Mankato. ESTEP will also host three 6th grade institutes (30 participants each) in three different regions of the state.

In summer 2024, the second high school cohort will finish their program, and ESTEP will host four 6th grade institutes in four regions.

ESTEP will serve as many as 310 teachers in 13 programs in summers 2022-24 and up to 840 teachers in online courses.

Activity Milestones:

Description	Completion Date
Complete three, first-year regional summer programs for up to 80 teachers of science.	August 31 2022
Complete five regional summer programs for up to 110 additional teachers.	August 31 2023
Complete 21 online sections, serving 40 teachers each, during the falls and springs of 2022-24.	May 31 2024
Complete five regional summer programs for up to 120 additional teachers.	August 31 2024

Activity 3: Evaluation and Reporting on ESTEP Impact on Environmental Education in Minnesota Schools

Activity Budget: \$9,000

Activity Description:

Objective: Collect data from ESTEP participants and their students to determine the effectiveness of the program and its impact on earth/environmental education in Minnesota.

Teacher Tests: Standards-based evaluative instruments will be developed to gauge teacher learning of earth/environmental concepts. Pre/post institute score analysis will determine the number that show statistically significant (t test) knowledge gains.

Teacher Survey: This will be a project-specific, Likert-type instrument to assess changes in attitude and classroom practice to be completed by teachers online in late spring and again at the end of the following school year. Items will be compared pre versus post to determine statistically significant differences (z tests) in responses related to confidence in teaching science/environmental topics, amount of instructional time devoted to science and phenomenon-based teaching, and areas of professional growth.

Student Tests: Project-developed student knowledge and skills tests and rubrics will be constructed. Achievement in earth/environmental content will be gauged by comparing scores of the teacher participants' students before the teachers attended the institutes with those after attendance using z tests for independent samples. Teachers who teach the same standards and did not attend ESTEP will be solicited to administer the same tests to their students.

Activity Milestones:

Description	Completion Date
Construct and test ESTEP Teacher Survey instruments.	January 31 2022
Complete the design of content tests and rubrics for gauging teacher and student learning.	March 31 2022
Administer online survey instrument to teachers registered for summer 2022 institutes.	April 30 2022
Collect data on student engagement and learning of environmental science during school year.	May 31 2023
Administer online survey again to teachers after one year of teaching post-ESTEP training.	May 31 2023

Analyze/report findings on teacher/student achievement and classroom advances in Minnesota	June 30 2023
earth/environmental education.	
Repeat data collecting, analysis and reporting for 2023 and 2024 programs.	August 31 2024

Project Partners and Collaborators

Name	Organization	Role	Receiving Funds
Dr. Russell Colson, Professor of Geology	Minnesota State University, Moorhead	Dr. Colson will serve as lead instructor for two cohorts of 20 high school science teachers seeking additional licensure in 9-12 Earth/Environmental Science. Colson will lead four, 8-day summer institutes at MSU-Moorhead, present at regional institutes, and instruct two online courses over the three years of the project.	Yes
Dr. Bryce Hoppie, P.G. (Mn), Professor of Geology	Minnesota State University, Mankato	Dr. Hoppie will be the lead earth/environmental science instructor for three, 5- day, regional 6th grade science teacher summer institutes and lead one cohort of high school teachers hosted at MSU-Mankato.	Yes
Dr. Kate S. Pound, Geology Professor	St. Cloud State University	Dr. Pound will be the lead earth/environmental science instructor for three, 5- day, 6th grade science teacher summer institutes hosted at St. Cloud State, Bemidji State, and UM-Crookston.	Yes
Dr. Jennifer L.B. Anderson, Professor of Geoscience	Winona State University	Dr. Anderson will serve as a guest presenter on Minnesota climate issues for all ESTEP summer institutes.	Yes
Dr. Hillary A. Barron, Research Associate	University of Minnesota Twin Cities	Dr. Barron will be a guest presenter in teaching toward equity in science/environmental education at all summer institutes.	Yes
Dr. Rachel Humphrey, Professor	St. Cloud State University	Dr. Humphrey will instruct the online introductory Meteorology course for teachers offering up to two sections in fall and spring over the three years of the project.	Yes
Larry Mascotti, Community Faculty	Metropolitan State University	Mr. Masotti will instruct the online introductory Astronomy course for teachers offering up to two sections in fall and spring over the three years of the project.	Yes
Kate Rosok, MESTA President	Minnesota Earth Science Teachers Association (MESTA)	MESTA - a statewide organization serving Minnesota earth science teachers - will provide co-instructors for each ESTEP summer institute, help with statewide coordination, identify regional field sites, and provide teaching resources and networking for ESTEP participants.	No
Dr. Donna Whitney	School of Earth and Environmental Sciences; University of Minnesota Twin Cities	Dr. Whitney will serve as a guest presenter focusing on Minnesota minerals, geo- habitats and petrology for all summer institutes.	Yes

Long-Term Implementation and Funding

Describe how the results will be implemented and how any ongoing effort will be funded. If not already addressed as part of the project, how will findings, results, and products developed be implemented after project completion? If additional work is needed, how will this be funded?

The ultimate result of ESTEP will be a cohort of science teachers confident in their content understanding and pedagogical skills in addressing the new Earth/Environmental Science standards. Implementation of a more vibrant, environmentally- and Minnesota-focused approach to teaching science will be immediate in classrooms across the state.

Pre/post testing of teachers and students plus pre/post attitudinal surveys will be used to gauge the success of ESTEP.

Resources and strategies will be distributed statewide through MnSTA conferences, workshops and website. All expenses in maintaining communication and sharing best practices and resources will be funded by MnSTA.

Project Manager and Organization Qualifications

Project Manager Name: Lee Schmitt

Job Title: ESTEP Coordinator

Provide description of the project manager's qualifications to manage the proposed project.

Lee Schmitt served as Associate Director for Professional Development and faculty in the Hamline University School of Education. His work involved developing and implementing large-scale programs for Minnesota teachers of science in the areas of science content, licensure, environmental education, practice-based instruction, and STEM education. Schmitt designed and managed statewide teacher programs in geology, biotechnology, chemistry/physics, drinking water, and three regional Science Academies funded by the state Math Science Partnership (MSP). Schmitt was project director for the nationally-recognized, \$2.3 million, Minnesota Science Teachers Education Project (MnSTEP) serving nearly 1000 K-12 teachers of science throughout Minnesota. He has served as president of the Minnesota Science Teachers Association (MnSTA) and the Minnesota Earth Science Teachers Association (MESTA), and was Co-PI/lead writer for Science and Engineering Practices in Action (SEPA) – a series of online professional development modules for K-12 teachers of science funded by a state MSP grant. Over his 22 years in teacher education, Schmitt has managed over 30 large-scale professional development projects serving thousands of Minnesota science teachers.

Organization: Minnesota Science Teachers Association

Organization Description:

The Minnesota Science Teachers Association (MnSTA) is a statewide, non-profit, 501(c)(3) organization dedicated to improving the quality of science and environmental education for ALL Minnesota students by providing K-16 science educators a platform for the exchange of ideas and materials, current research in science and environmental education, a statewide leadership and communication network, and needed professional development in all science disciplines. Established in 1964, MnSTA is governed by a 32-member board of directors representing all science disciplines, 11 regions of the state, universities, urban and rural districts, public/private schools, as well as informal and alternative science education. MnSTA has led, partnered and/or contributed to numerous, statewide professional development programs for Minnesota teachers of science.

Budget Summary

Category / Name	Subcategory or Type	Description	Purpose	Gen. Ineli	% Bene	# FTE	Class ified	\$ Amount
	- //			gible	fits		Staff?	
Personnel								
						[Sub	-
							Total	
Contracts								
and Services								
Dr. Russell	Professional	Dr. Colson will be lead instructor for one cohort of				0.84		\$33,800
Colson	or Technical	high school teachers totaling 16 days of instruction at						
	Service	\$800 per day (NSF PhD daily rate) plus instruct six						
	Contract	online courses at \$3000 per course. (Normal						
		reimbursement would be \$9348.)						
Dr. Bryce	Professional	Dr. Hoppie will serve as lead instructor for three 6th				0.54		\$30,800
Hoppie	or Technical	grade summer institutes and one high school cohort						
	Service	totaling 38 days of instruction over three years. The						
	Contract	\$800/day stipend matches NSF grant guidelines for						
		PhD instructors and includes all preparation, course						
		instruction, assessment, mileage, and per diem.						
Dr. Kate	Professional	Dr. Pound will serve as lead instructor for three, 5-				0.06		\$12,000
Pound	or Technical	day, 6th grade teacher summer institutes to be held						
	Service	in northern regions of the state. The \$800/day						
	Contract	stipend is based on NSF grant guidelines for PhD						
		instructors and includes all preparation, course						
		instruction, assessment, mileage, and per diem.						
Dr. Rachel	Professional	Ms. Humphrey will instruct three online courses in				0.39		\$9,000
Humphrey	or Technical	Meteorology, one per year, over three years. The						
	Service	instructor rate of \$3000 per online course is based						
	Contract	on one-third of the standard university rate for						
		teaching a three-credit online course for up to 40						
		students.						
Larry	Professional	Mr. Mascotti will instruct three online courses in				0.39		\$9,000
Mascotti	or Technical	Astronomy, one per year, over three years. The						
	Service	instructor rate of \$3000 per online course is based						
	Contract	on one-third of the standard university rate for						
		teaching a three-credit online course for up to 40						
		students.						
Dr. Jennifer	Professional	Dr. Anderson will present on Minnesota climate for				0.15		\$4,400
Anderson	or Technical	one-half day for 11 programs over three years. \$400						

			1		
	Service	is one-half of the \$800 per day afforded PhD			
	Contract	instructors based on NSF grant guidelines and			
		includes all preparation, presentation, mileage, and			
		per diem.			
Dr. Hillary	Professional	Dr. Barron will present on achieving equity in		0.15	\$4,400
Barron	or Technical	science/environmental education for one-half day			
	Service	for 11 programs over three years. \$400 is one-half of			
	Contract	the \$800 per day afforded PhD instructors based on			
		NSF grant guidelines and includes all preparation,			
		presentation, mileage, and per diem.			
Dr. Donna	Professional	Dr. Whitney will present on Minnesota mineral		0.15	\$4,400
Whitney	or Technical	resources and petrology for one-half day for 11			
	Service	programs over three years. \$400 is one-half of the			
	Contract	\$800 per day afforded PhD instructors based on NSF			
		grant guidelines and includes all preparation,			
		presentation, mileage, and per diem.			
Dana Smith	Professional	Ms. Smith will co-instruct for two, 8-day programs		0.3	\$11,400
	or Technical	focusing on environmental education. \$400 per day			
	Service	is based on NSF grant guidelines for non-PhD			
	Contract	instructors and is inclusive of all expenses. She will			
		also guest present on environmental topics for five			
		institutes and co-teach one online class.			
Marlene	Professional	Ms. Schoeneck, a high school science teacher, will		0.15	\$4,400
Schoeneck	or Technical	guest present for one day in each of 11 programs			
	Service	focusing on environmental education and pedagogy.			
	Contract	\$400 per day is based on NSF grant guidelines for			
		non-PhD instructors and includes all preparation,			
		presentation, mileage, and per diem.			
Mary Ann	Professional	Ms. Colson, a middle school science teacher, will co-		0.12	\$8,400
Colson	or Technical	instruct with Dr. Colson at MSU-Moorhead for two,			
	Service	8-day programs focusing on environmental			
	Contract	education and pedagogy. \$400 per day is based on			
		NSF grant guidelines for non-PhD instructors and			
		includes all expenses. She will also guest present five			
		days at other institutes.			
Joseph	Professional	Mr. Reymann will manage the ESTEP budget and be		0.3	\$9,000
Reymann	or Technical	responsible for all budget-related transactions.			
	Service	\$3000 per year is based on an estimated 200 hours			
	Contract	per year at \$15/hour.			
Lee Schmitt	Professional	Mr. Schmitt will manage project evaluation and		0.3	\$9,000
	or Technical	reporting by collecting data from ESTEP participants			

	Service	and their students to determine the effectiveness of			
	Contract	the program and its impact on environmental			
		education in Minnesota, \$3000 per year is based on			
		an estimated 200 hours per year at \$15/hour.			
High School	Professional	Nine experienced high school earth/environmental		0.51	\$18.000
Teacher Co-	or Technical	teachers will be selected to co-teach each of the			, ,,,,,,,,
instructors	Service	nine. 5-day, 6th grade summer institutes to provide			
TBD	Contract	direct classroom focus and teaching strategies \$400			
100	contract	ner day is based on NSE grant guidelines for non-PhD			
		instructors and includes all preparation			
		presentation mileage and per diem			
Course	Sub award	Amount is based on 80% of 40 possible teachers in	v	0	 \$43.200
Course Credit for	Sub awaru	the high school program choosing to receive credits	^	0	<i>3</i> 43,200
		the high school program choosing to receive credits			
		\$120/gradit is a pagatisted for from MSU Maarbard			
Dentisiaente		(and instification)			
Participants		(see Justification).			
		12-credit licensure preparation program x			
		\$120/credit x 30 participants.		-	 451.010
Course	Sub award	Amount is based on 80% of 270 possible teachers in	х	0	\$51,840
Credits for		the nine, 5-day summer programs choosing to			
6th grade		receive credits vs stipend for their participation in			
Teacher		ESTEP. \$120/credit is a negotiated fee from MSU-			
Participants		Moorhead (see justification).			
		2 credits x \$120/credit x 216 participants.			
Online	Sub award	Amount is based on 50% of a possible 960 teachers	Х	0	\$172,800
Course		that could participate in ESTEP online courses if every			
Credit for		section were filled (highly unlikely). \$120/credit is a			
Teachers		negotiated fee from MSU-Moorhead (see			
		justification).			
		3 credits x \$120/credit x 480 teachers.			
Stipends for	Professional	Amount based on 20% of 40 possible teachers in the	Х	0.9	\$9 <i>,</i> 600
High School	or Technical	high school program choosing to receive a stipend vs			
Teacher	Service	credits. \$60/day for attending professional			
Participants	Contract	development is 33% of the average teacher stipend			
		rate of \$180/day.			
		8 days x \$60/day x 2 summers x 10 teachers.			
Stipends for	Professional	Amount based on 20% of 270 possible teachers in	Х	5.1	\$16,200
6th grade	or Technical	the 6th grade program choosing to receive a stipend			
Participating	Service	vs credits. \$60/day for attending professional			
Teachers	Contract	development is 33% of the average teacher stipend			

		rate of \$180/day.				
ESTEP Planning Team	Professional or Technical Service Contract	 S days x \$60/day x 54 teachers. Planning for year one will be completed in kind. In years two and three, five members of planning team (R. Colson, M. Colson, D. Smith, L. Schmitt, & B. Hoppie) will receive a \$200 stipend per year to modify programs. (\$20/hour x 10 hours x 2 years x 5 planners.) 		0.04		\$2,000
					Sub Total	\$463,640
Equipment, Tools, and Supplies						
	Tools and Supplies	Field Notebooks for Teachers (310 teachers x \$21.95)	Recording data and notes from field and lab investigations plus essential geo-scales and information for processing soil, mineral and rock data in the field.			\$6,805
	Tools and Supplies	Field lens. (310 teachers x \$13.50)	Essential tool for magnification in the field.			\$4,185
	Tools and Supplies	MGS County Atlases (310 teachers x \$12.50)	Detailed geologic maps of each teacher's county including bedrock, habitats, water and mineral resources.			\$3,875
	Tools and Supplies	Assorted MGS Geology/Hydrology Maps of Minnesota (310 teachers x \$25)	Observation and investigation of Minnesota soils, water, habitats, and mineral resources.			\$7,750
	Tools and Supplies	General field/lab supplies TBD based on final curricula in each region. Supply amount is based on MSU-recommended \$125/student for instructional supplies in a science class.	Tools, lab equipment, chemicals needed for field and lab investigations TBD.			\$7,257
					Sub Total	\$29,872
Capital Expenditures						
					Sub Total	-
Acquisitions and Stewardship						
					Sub Total	-

Travel In Minnesota						
					Sub Total	-
Travel Outside Minnesota						
					Sub Total	-
Printing and Publication						
	Printing	Duplicating of handouts (40 pages/teacher x .12/page x 310 participants).	Printouts will be needed for teachers to use in processing data, gaining insight into lesson design, and to highlight pertinent earth/environmental science content.			\$1,488
					Sub Total	\$1,488
Other Expenses						
					Sub Total	-
					Grand Total	\$495,000

Classified Staff or Generally Ineligible Expenses

Category/Name	Subcategory or Type	Description	Justification Ineligible Expense or Classified Staff Request
Contracts and Services - Course Credit for High School Teacher Participants	Sub award	Amount is based on 80% of 40 possible teachers in the high school program choosing to receive credits vs stipend for their participation in ESTEP. \$120/credit is a negotiated fee from MSU-Moorhead (see justification). 12-credit licensure preparation program x \$120/credit x 30 participants.	Educational professional development grants typically fund a teacher credit or stipend option. MSP, ITQ, 3M, Medtronic, MDE and NSF grants all allow for payment of credits or stipend to teachers. Participation in ESTEP requires a large commitment of time, and teachers deserve some form of compensation. MnSTA has negotiated with Minnesota State University, Moorhead to provide a "co-sponsored rate" for graduate credits at \$120 per credit. This pays for administration of the credit only (recording, posting grades, transcripts, etc.) and provides no "profit" or overhead for the university. MSU-Moorhead would normally charge \$460/credit, so \$120 is a real bargain not offered by any other university. Course credits will be consolidated and all payments for credits will be made to MSU-Moorhead. This is a single source contract.
Contracts and Services - Course Credits for 6th grade Teacher Participants	Sub award	Amount is based on 80% of 270 possible teachers in the nine, 5-day summer programs choosing to receive credits vs stipend for their participation in ESTEP. \$120/credit is a negotiated fee from MSU- Moorhead (see justification). 2 credits x \$120/credit x 216 participants.	Educational professional development grants typically fund a teacher credit or stipend option. MSP, ITQ, 3M, Medtronic, MDE and NSF grants all allow for payment of credits or stipend to teachers. Participation in ESTEP requires a large commitment of time, and teachers deserve some form of compensation. MnSTA has negotiated with Minnesota State University, Moorhead to provide a "co-sponsored rate" for graduate credits at \$120 per credit. This pays for administration of the credit only (recording, posting grades, transcripts, etc.) and provides no "profit" or overhead for the university. MSU-Moorhead would normally charge \$460/credit, so \$120 is a real bargain not offered by any other university. Course credits will be consolidated and all payments for credits will be made to MSU-Moorhead. This is a single source contract.
Contracts and Services - Online Course Credit for Teachers	Sub award	Amount is based on 50% of a possible 960 teachers that could participate in ESTEP online courses if every section were filled (highly unlikely). \$120/credit is a negotiated fee from MSU-Moorhead (see justification). 3 credits x \$120/credit x 480 teachers.	Educational professional development grants typically fund a teacher credit or stipend option. MSP, ITQ, 3M, Medtronic, MDE and NSF grants all allow for payment of credits or stipend to teachers. Participation in ESTEP requires a large commitment of time, and teachers deserve some form of compensation. MnSTA has negotiated with Minnesota State University, Moorhead to provide a "co-sponsored rate" for graduate credits at \$120 per credit. This pays for administration of the credit only (recording, posting grades, transcripts, etc.) and provides no "profit" or overhead for the university. MSU-Moorhead would normally charge \$460/credit, so \$120 is a real bargain not offered by any other university. Course credits will be consolidated and all payments for credits will be made to MSU-Moorhead. This is a single source contract.

Contracts and Services - Stipends for High School Teacher Participants	Professional or Technical Service Contract	Amount based on 20% of 40 possible teachers in the high school program choosing to receive a stipend vs credits. \$60/day for attending professional development is 33% of the average teacher stipend rate of \$180/day. 8 days x \$60/day x 2 summers x 10 teachers.	Educational professional development grants typically fund a teacher credit or stipend option. MSP, ITQ, 3M, Medtronic, MDE and NSF grants all allow for payment of credits or stipend to teachers. Participation in ESTEP requires a large commitment of time, and teachers deserve some form of compensation. \$60/day for attending professional development is 33% of the average teacher daily stipend rate of \$180/day.
Contracts and Services - Stipends for 6th grade Participating Teachers	Professional or Technical Service Contract	Amount based on 20% of 270 possible teachers in the 6th grade program choosing to receive a stipend vs credits. \$60/day for attending professional development is 33% of the average teacher stipend rate of \$180/day. 5 days x \$60/day x 54 teachers.	Educational professional development grants typically fund a teacher credit or stipend option. MSP, ITQ, 3M, Medtronic, MDE and NSF grants all allow for payment of credits or stipend to teachers. Participation in ESTEP requires a large commitment of time, and teachers deserve some form of compensation. \$60/day for attending professional development is 33% of the average teacher daily stipend rate of \$180/day.

Non ENRTF Funds

Category	Specific Source	Use	Status	Amount
State				
			State Sub Total	-
Non-State				
In-Kind	Summer Instructor and Presenter Travel	Instructors' summer mileage for travel to and from summer institute locations will be waived. (200 miles/year x .575/mile x 12 instructors/presenters x 3 years = \$4140 in kind.)	Secured	\$4,140
In-Kind	Participant Travel to Field Sites	Program bus/van mileage to transport teachers to field sites will be replaced by using teacher vehicles. (4 vehicles/summer x 300 miles/day x 0.58/mile x 21 days = \$14,616 in kind.)	Secured	\$14,616
In-Kind	Lead Instructor Planning Mileage	Mileage for Drs. Colson, Hoppie, and Pound to visit and select field sites for investigation will be waived. (300 miles x .575/mile x 4 instructors = \$2,070 in kind.)	Secured	\$2,070
In-Kind	Minnesota Universities and Schools	Rental fees for use of university facilities and school sites for summer institutes will be waived. (Estimated \$500/week x 17 weeks = \$8500 in program savings.)	Secured	\$8,500
In-Kind	Minnesota Science Teachers Association (MnSTA)	A one-year membership in MnSTA/MESTA will be provided in kind for summer teacher participants. (310 participants x \$25 = \$7750 in kind.)	Secured	\$7,750
In-Kind	Minnesota Science Teachers Association (MnSTA)	MnSTA website marketing, registration, and statewide online distribution of resources will be provided in kind. (\$600/year x 3 years = \$1800)	Secured	\$1,800
In-Kind	Minnesota Science Teachers Association (MnSTA)	The six-member ESTEP Lead Planning Team received a \$10,000 planning grant from MnSTA.	Secured	\$10,000
In-Kind	Minnesota School Districts	Minnesota school districts will be asked to reimburse teacher travel expenses to ESTEP summer institutes using their available ESSA funding. Room and board amount is based on 50% need for 6th grade teachers and 100% need for high school teachers staying in university dorms.	Potential	\$42,320
			Non State Sub Total	\$91,196
			Funds Total	\$91,196

Attachments

Required Attachments

Visual Component File: <u>520c1ad3-ecb.pdf</u>

Alternate Text for Visual Component

The new 2019 Minnesota Science Benchmarks for 6th grade and high school students are presented here. Benchmarks which represent a strong Minnesota environmental focus are highlighted. These new benchmarks are the motivation and purpose of our ESTEP proposal to help teachers across Minnesota revitalize their environmental/earth science curricula and teach with new energy and confidence....

Financial Capacity

File: 2f9e617e-b29.pdf

Board Resolution or Letter

Title	File
MnSTA Board Authorization for LCCMR Grant (ESTEP)	<u>306e4e5f-000.pdf</u>

Optional Attachments

Support Letter or Other

Title	File
Intro & 2019 Minnesota Academic Standards in Science	ea247e7b-219.pdf

Administrative Use

Does your project include restoration or acquisition of land rights?

No

- Does your project have potential for royalties, copyrights, patents, or sale of products and assets? No
- Do you understand and acknowledge IP and revenue-return and sharing requirements in 116P.10? N/A
- Do you wish to request reinvestment of any revenues into your project instead of returning revenue to the ENRTF? N/A
- Does your project include original, hypothesis-driven research? No
- Does the organization have a fiscal agent for this project?

No

6E.1.1.1.1 Ask questions that arise from observations of patterns in the movement of night sky objects to test the limitations of a solar system model. (P: 1, CC: 1, CI: ESS1) Emphasis is on students questioning the limitations of their own models and questioning the kinds of revisions needed to account for new data. Examples of observations may include the student's own observations or observations made by others. Examples of night sky objects include the Moon, constellations, and planets.

6E.1.1.1.2 Ask questions to examine an interpretation about the relative ages of different rock layers within a sequence of several rock layers. (P: 1, CC: 1, CI: ESS1) *Emphasis is on the interpretation of rock layers using geologic principles like superposition and cross-cutting relationships*.

6E.1.1.1.3 Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. (P: 1, CC: 7, CI: ESS3) *Emphasis is on the major role that human activities play in causing the rise in global temperatures. Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities.* 6E.1.2.1.1 Collect data and use digital data analysis tools to identify patterns to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.** (P: 3, CC: 2, CI: ESS2) *Emphasis is on how weather at a fixed location changes in response to moving air masses and to interactions at frontal boundaries between air masses. Examples of weather data may include temperature, air pressure, precipitation, and wind. Examples of data analysis may include weather maps, diagrams, and visualizations or may be obtained through laboratory experiments (such as with condensation).*

6E.2.1.1.1 Analyze and interpret data to determine similarities and differences among features and processes occurring on solar system objects. (P: 4, CC: 3, CI: ESS1) Examples of objects may include moons, planets, comets or asteroids. Example features may include characteristics of an object's atmosphere, surface or interior. Examples of processes may include erosion, deposition, cratering, or volcanism.

6E.2.1.1.2 Analyze and interpret data on the distribution of fossils, rocks, continental shapes, and seafloor structures to provide evidence of past plate motions. (P: 4, CC: 1, CI: ESS2) *Examples of data may include similarities of rock and fossil types on different continents, the shapes of the continents (including the continental shelves), and the locations of ocean floor features such as ridges and trenches.*

6E.2.1.1.3 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.* (P: 4, CC: 1, CI: ESS3, ETS1) *Examples of natural hazards may be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events. Examples of data may include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies may include building tornado shelters or barriers to protect from flooding.*

6E.3.1.1.1 Develop and use scale models of solar system objects to describe the sizes of objects, the location of objects, and the motion of the objects; and include the role that gravity and inertia play in controlling that motion. (P: 2, CC: 3, CI: ESS1) *Emphasis is on the regularity of the motion and accounting for Earth-based visual observations of the motion of these objects in our sky. Emphasis is also on recognizing the limitations of any of the models. Examples may include physical models (such as the analogy of distance along a football field or computer visualizations of orbits) or conceptual models (such as mathematical proportions relative to the size of familiar objects such as students' school or state). Not included are Kepler's Laws and retrograde motion of planets.*

6E.3.1.1.2 Develop a model, based on observational evidence, to describe the cycling and movement of Earth's rock material and the energy that drives these processes. (P: 2, CC: 5, CI: ESS2) *Emphasis of the practice is on using observations of processes like weathering and erosion of soil and rock, deposition of sediment, and crystallization of lava to inform model development. Emphasis of the core idea is on how these processes operate over geologic time to form rocks and minerals through the cycling of Earth's materials. Examples of models may be conceptual or physical.*

6E.3.1.1.3 Develop a model, based on observational and experimental evidence, to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. (P: 2, CC: 5, CI: ESS2) *Emphasis of the practice is on developing a way to represent the mechanisms of water changing state, the global movements of water and energy, and on how the observational and experimental evidence supports the model. Examples of models may be conceptual or physical.*

6E.3.2.1.1 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. (P: 6, CC: 3, CI: ESS1) *Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of major events may include the evolution or extinction of particular organisms, the formation of mountain chains and the formation of ocean basins. Not included is using radioactive decay to age date rocks.*

6E.3.2.1.2 Construct a scientific explanation based on evidence for how the uneven distribution of Earth's mineral, energy, or groundwater resources is the result of past geological processes. (P: 6, CC: 2, CI: ESS3) *Emphasis is on how these resources are limited and typically non-renewable on a human timeframe. Examples of uneven distribution of resources may include petroleum (like in the North Dakota Bakken Shale), metal ores (like iron in the rocks of Minnesota's Iron Range), or groundwater in the different regions of Minnesota.*

6E.3.2.1.3 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* (P: 6, CC: 2, CI: ESS3, ETS1) *Emphasis of the practice is on applying scientific principles about Earth's natural processes (like how water moves through the ground and air) to designing solutions to problems caused by human activity. Emphasis of the core idea is on how human activity impacts Earth's environments. Examples of parts of the design process may include assessing the kinds of solutions that are feasible, and designing and evaluating solutions that may reduce those impacts. Examples of human activities that impact the environment may include withdrawing too much water from aquifers, altering stream flow by building dams or levees, increasing runoff caused by impermeable surfaces like parking lots, or adding undesirable materials to the air, water or land.*

6E.4.1.1.1 Construct an argument, supported by evidence, for how geoscience processes have changed Earth's surface at varying time and spatial scales. (P: 7, CC: 3, CI: ESS2) *Emphasis is on how processes like erosion, deposition, mountain building, and volcanism affect the surface of Earth. Some processes, like mountain building take a long time. Other processes, like landslides, happen quickly. Examples may include how weathering, erosion and glacial activity have shaped the surface of Minnesota.* 6E.4.2.2.1 Communicate how a series of models, including those used by Minnesota American Indian Tribes and communities and other cultures, are used to explain how motion in the Earth-Sun-Moon system causes the cyclic patterns of lunar phases, eclipses and seasons. (P: 8, CC: 1, CI: ESS1) *Examples of cultures may include those within the local context of the learning community and within the context of Minnesota. Emphasis is on students questioning the limitations of their models and revising them to account for new observations. Models may be physical, graphical or conceptual.*

9E.1.1.1.1 Ask questions to clarify how seismic energy traveling through Earth's interior can provide evidence for Earth's internal structure. (P: 1, CC: 6,CI: ESS2) *Emphasis is on how wave propagation depends on the density of the medium through which the wave travels and how seismic data is used to support the idea of a layered earth.*

9E.1.2.1.1 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. (P: 3, CC: 6, CI: ESS2) *Emphasis is on physical and chemical investigations with water and a variety of solid materials to provide the evidence for how processes in the water cycle and rock cycle interact. Examples of physical investigations may include transportation and deposition of various sediment types and sizes, erosion of surfaces with varying amounts of soil moisture content and/or ground cover, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations may include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids). Examples specific to Minnesota may include chemical weathering of limestone to create karst topography.*

9E.1.2.1.2 Plan and conduct an investigation of the properties of soils to model the effects of human activity on soil resources. (P: 3, CC: 2, CI: ESS3, ETS2) *Emphasis is on identifying variables to test, developing a workable experimental design, and identifying limitations of the data. Examples of variables may include soil type and composition (particularly those found in Minnesota), erosion rate, water infiltration rates, nutrient profiles, soil conservation practices, or specific crop requirements.*

9E.2.1.1.1 Analyze data to make a valid scientific claim about the way stars, over their life cycle, produce elements. (P: 4, CC: 5, CI: ESS1) *Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.*

9E.2.1.1.2 Analyze geoscience data to make a claim that one change to the Earth's surface can create feedbacks that cause changes to other Earth systems. (P: 4, CC: 7, CI: ESS2, ETS2) Emphasis is on using data analysis tools and techniques in order to make valid scientific claims. Examples may include climate feedback mechanisms, such as how an increase in greenhouse gases causes a rise in global temperatures that melt glaciers and sea ice, which reduces the amount of sunlight reflected from the Earth's surface (albedo), increasing surface temperatures and further reducing the amount of ice. Examples may also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent and longevity.

9E.2.1.1.3 Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems and human infrastructure.* (P: 4, CC: 7, ESS3, ETS1) *Examples of evidence (for both data and climate model outputs) may include precipitation and temperature and their associated impacts on sea level, glacial ice volumes, and atmosphere and ocean composition. Engineering examples may include using climate change data (rising sea levels) to evaluate the impact on the ability of sewer system to handle runoff or of existing wells to produce potable water.*

9E.2.2.1.1 Use mathematical and computational representations to predict the motion of natural and human-made objects that are in orbit in the solar system.** (P: 5, CC: 3, CI: ESS1, ETS2) *Emphasis is on Kepler's laws of planetary motion and Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.*

9E.2.2.1.2 Develop a computational model, based on observational data, experimental evidence, and chemical theory, to describe the cycling of carbon among Earth's systems.** (P: 2, CC: 5, CI: ESS2) *Emphasis is on quantitative modeling of carbon as it cycles through the ocean, air, rock (particularly limestone), soil, and organisms. Emphasis is also on using empirical evidence and scientific reasoning to inform the algorithmic thinking about the conservation and cycling of matter.*

9E.2.2.1.3 Develop or use an algorithmic representation, based on investigations of causes and effects in complex Earth systems, to illustrate the relationships within some part of the Earth system and how human activity might affect those relationships. (P: 5, CC: 4, CI: ESS3, ETS2) *Emphasis is on students identifying the interacting components of a system, mathematically modeling how those factors interact and accounting for the effects of human activity on the system. Examples may include local systems in which natural and human-influenced variables impact the amount of runoff.*

9E.3.1.1.1 Develop and use a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation. (P: 2, CC: 3, CI: ESS1) *Emphasis is on showing the relationships among the fuel, products and the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach the Earth. Examples of evidence that students might use include the masses and life times of other stars, as well as the ways that the sun's radiation varies due to sudden solar flares, sunspot cycles, and non-cyclic variations over the centuries.*

9E.3.1.1.2 Develop and use a model based on evidence to explain how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. (P: 2, CC: 7, CI: ESS2) *Emphasis is on how the appearance of land features (such as mountains, and valleys), and seafloor features (such as trenches and ridges) are a result of both constructive mechanisms (such as volcanism, and tectonic motion) and destructive mechanisms (such as weathering, and coastal erosion). Examples specific to Minnesota may include features formed relatively recently during continental glaciation and volcanic features that have long since been eroded away.*

9E.3.1.1.3 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. (P: 2, CC: 4, CI: ESS2) *Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean currents, which is constrained by the Coriolis effect and the outlines of continents. Examples of models may be diagrams, maps and globes, or digital representations .*

9E.3.1.1.4 Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (P: 2, CC: 2, CI: ESS2). *Emphasis is on using a model to describe the mechanism for how energy flow affects changes in climate. Examples of the causes of climate change differ by timescale and may include:* 1 - 10 years: large volcanic eruptions, ocean circulation; 10-100s of years: *changes in human activity, ocean circulation, solar output; 10 - 100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10 - 100s of millions of years: long term changes in atmospheric composition.*

9E.3.2.1.1 Construct an explanation that links astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe to the Big Bang. (P: 6, CC: 5, CI: ESS1, ETS2) *Emphasis is on how the redshift of light from galaxies is an indication of cosmic expansion, on how the cosmic microwave background radiation is a remnant of the Big Bang, and on how the observed composition of ordinary matter, primarily found in stars and interstellar gases, matches that predicted by the Big Bang.*

9E.3.2.1.2 Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. (P: 6, CC: 7, CI: ESS1) *Emphasis of the practice is on linking the evidence to the claims about Earth's formation. Emphasis of the core idea is on using available evidence within the solar system to reconstruct the early history of Earth. Examples of evidence include the absolute ages of ancient materials, the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.*

9E.3.2.2.1 Evaluate or refine a technological solution to reduce the human impacts on a natural system and base the evaluations or refinements on evidence and analysis of pertinent data.* (P: 6, CC: 7, CI: ESS3, ETS1, ETS2) *Emphasis is on prioritizing identified criteria and constraints related to social and environmental considerations. Examples of data for the impacts of human activities may include the quantities and types of pollutants released into air or groundwater, changes to biomass and species diversity, or areal changes in land surface use (for surface mining, urban development, or agriculture). Examples for limiting impacts may range from local efforts (such as reducing, reusing, and recycling resources) to largescale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean)*.

9E.4.1.1.1 Evaluate the evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. (P: 7, CC: 1, CI: ESS1) *Emphasis is on evaluating the strengths, weaknesses and reliability of the given evidence along with its ability to support logical and reasonable arguments about the motion and age of crustal plates. Examples of evidence may include the ages of oceanic crust which increase with distance from mid-ocean ridges (a result of seafloor spreading), the ages of North American continental crust decreasing with distance away from a central ancient core (a result of past plate interactions).*

9E.4.1.1.2 Evaluate the evidence and reasoning for the explanatory model that Earth's interior is layered and that thermal convection drives the cycling of matter. (P: 7, CC: 5, CI: ESS2) *Emphasis is on how plate tectonics is controlled by mantle convection (due to the outward flow of energy from the decay of radioactive isotopes and the gravitational movement of denser materials toward the interior).*

9E.4.1.1.3 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* (P: 7, CC: 5, CI: ESS3, ETS1) *Emphasis is on the conservation, recycling, and reuse of resources (such as minerals, metals or soils) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for fracking sand, iron ore, and rare metals), and pumping (for oil and natural gas).*

9E.4.2.1.1 Compare, integrate and evaluate sources of information in order to determine how specific factors, including human activity, impact the groundwater system of a region. (P: 8, CC: 2, CI: ESS2, ETS2) *Emphasis is on the making sense of technical information presented in a variety of formats (graphs, diagrams and words)*. Example of sources of information may include student experimental data. Examples of factors may include porosity, permeability, sediment or rock type, recharge or discharge factors, and potential energy. Examples of human factors may include usage rates, run-off, agricultural practices, and loss of wetlands.

9E.4.2.2.1 Apply place-based evidence, including those from Minnesota American Indian Tribes and communities and other cultures, to construct an explanation of how a warming climate impacts the hydrosphere, geosphere, biosphere, or atmosphere. (P: 8, CC: 4, CI: ESS3) *Examples of cultures may include those within the local context of the learning community and within the context of Minnesota* . *Emphasis is on understanding and using American Indian knowledge systems to describe regional impacts of climate change to Minnesota. Examples may include the water cycle and how precipitation change over time impacts cultural practices related to nibi ("water" in the Ojibwe language); or the decline/species loss of wiigwaas ("paper birch" in the Ojibwe language and an important tree in Anishinaabe culture) due to climate stressors like drought or changes in snow cover.*