Environment and Natural Resources Trust Fund 2018 Request for Proposals (RFP)

Project Title:	ENRTF ID: 033-A
Tracking and Communicating Ice Safety	
Category: A. Foundational Natural Resource Data and Inform	ation
Total Project Budget: \$ 282,000	
Proposed Project Time Period for the Funding Requested:	3 years, July 2018 to June 2021
Summary:	
Minnesota DNR has reported that 193 people have lost their lives road salt lead to uncertainty and higher risk to human safety.	in the last three decades. Mid-winter warmth,
Name: Joe Magner	
Sponsoring Organization: U of MN	
Address: 1390 Eckles Ave	
<u>St. Paul</u> <u>MN</u> <u>55108</u>	
Telephone Number: (715) 222-9809	_
Email jmagner@umn.edu	
Web Address	
Location	
Region: Statewide	
County Name: Statewide	
City / Township: Statewide	

Alternate Text for Visual:

Г

The proposal will look at lakes across Minneota

Funding Priorities Multiple Benefits Outcomes Knowledge Base	
Extent of Impact Innovation Scientific/Tech Basis Urgency	
Capacity Readiness Leverage TOTAL%	

PROJECT TITLE: Don't Fall Through the Cracks: Tracking and Communicating Ice Safety

I. PROJECT STATEMENT

Many Minnesotans enjoy outdoor ice activities on lakes during winter. However, thin ice-related accidents occur too often — the Minnesota DNR has reported that 193 people have lost their lives in the state in the last three decades. Mid-winter warm spells and increased salt in Metro lakes has led to uncertainty and higher risk to human safety.

This project will develop inexpensive devices to measure ice thickness and quality in real-time and make the information publically available online. A team of engineers and scientists will determine how many, and which lakes should be monitored for greatest efficacy, followed by the installation of a remote sensing arrays to communicate ice depth and quality data to the public. The data from this installation would also prove useful in the future for predicting seasonal ice parameters from year to year.

II. PROJECT ACTIVITIES AND OUTCOMES

Activity 1: Design of ice depth and quality sensing platform

Budget: \$99,000

Budget: \$101,000

Budget: \$27,000

Design of GPS-enabled impedance-measurement based ice depth and quality sensors capable of inexpensive bulk deployment and remote data acquisition. (Lead by Kouttron)

Outcome	Completion Date
1. Evaluate design requirements and establish sensor package and communication system	April 2019
design	
2. Prototype sensor package and communication design	December 2018
3. Basic bench testing (including calibration) and design iteration	June 2019
4. Establishment of final design	September 2019

Activity 2: Field Testing phase

Testing of both physical sensor package and communication infrastructure in varying field settings along with evaluation of failure modes, followed by design adjustment using data gathered during testing. (Lead by Magner)

Outcome	Completion Date
1. Testing of sensor package in local water bodies	April 2020
2. Evaluate robustness and failure modes of both physical sensor package and	April 2020
communication/data management infrastructure	
3. Evaluate quality and consistency of data collected	April 2020
4. Modify prototype designs if necessary	September 2020

Activity 3: Determination of spatial and geographical deployment parameters

Decisions regarding sensor placement will be made using statistical and limnological analysis of potential targets at both state and local levels. (Lead by Wilson)

Outcome	Completion Date
1. Classify and rank lakes for ice safety and recreational importance	November 2019
2. Determine how many sensors should be placed within lakes of highest importance	November 2019
3. Decide sensor distribution within individual lakes	November 2019
4. Determine strategy for statistical representation of lakes across Minnesota	November 2019

Activity 4: Deployment

Budget: \$55,000

Deployment of sensor packages and website system before the lakes begin freezing over. (Lead by Magner)		
Outcome	Completion Date	
1. Deploy sensors (number/location determined in Activity 3) in each of 5 lakes.	November 2020	
2. Publicly accessible website for ice depth/quality data launched simultaneously.	November 2020	
3. Active monitoring of sensors throughout the winter with monthly side-by-side	November 2020	
comparisons.		
4. Sensor recovery after lakes thaw completely; post-project data analyses	May 2021	

III. PROJECT STRATEGY

A. Project Team/Partners

Dr. Joe Magner is a research professor in the Bioproducts and Biosystems Engineering (BBE) department of the University of Minnesota will be supervising the project; he has 40 years of experience with field deployment of water test equipment including winter measurements. He has a depth of knowledgeable concerning the geography and limnology of Minnesota.

Hanna Lin, a graduate student also in the BBE department at UMN, has experience in mechanical design, fabrication, and environmental hardening. She will be involved in the design, deployment, and analysis phases of the project.

Dane Kouttron, Special Projects Engineer at MIT, has experience designing, testing, and deploying a wide range of sensing systems spanning several scientific disciplines. He has an extensive background in electrical engineering, radio communications, and power electronics.

Dr. Bruce Wilson is a professor (BBE). His extensive knowledge of hydrological modeling, parameter estimation, and statistical design will guide Activity 3 and the post-project data analyses portion of Activity 4.

B. Project Impact and Long-Term Strategy

The long term impact of this work is to establish a dependable, state-funded platform where Minnesotans can get statewide reliable and timely ice safety information before engaging in lake-related recreational activities.

C. Timeline Requirements

The timeline for this proposal is three years (July 2018 to June 2021), Product development in 2018-19 and deployment in 2020-21; including both deployment before ice-in and recovery and analysis after ice-out).

2018 Detailed Project Budget

Project Title: Don't Fall Through the Cracks: Tracking and Communicating Ice Safety

IV. TOTAL ENRTF REQUEST BUDGET 3 years

BUDGET ITEM (See "Guidance on Allowable Expenses", p. 13)		AMOUNT	
Personnel:	\$	-	
Joseph Magner, PI, (self-supporting faculty) will provide direction for the project. 75% salary/25%	\$	50,000	
benefits			
Bruce Wilson, Co-PI - No funds requested	\$	-	
Civil services and other technical staff (3 individuals); approximately 0.3 FTE. 78.5% salary/22%	\$	63,000	
fringe			
Undergraduate support staff, part-time academic year and full-time summer. 100% salary	\$	44,000	
Graduate research assistant, .25 FTE time, 58% salary/42% fringe	\$	70,000	
Professional/Technical/Service Contracts:	\$	-	
Professional services for MIT engineer	\$	25,000	
Equipment/Tools/Supplies:	\$	-	
Lab supplies and construction materials	\$	30,000	
Acquisition (Fee Title or Permanent Easements): In this column, indicate proposed number of	\$	-	
acres and and name of organization or entity who will hold title.			
Travel: Be specific. Generally, only in-state travel essential to completing project activities can be	\$	-	
included.			
Additional Budget Items: In this column, list any additional budget items that do not fit above	\$	-	
categories. List by item(s) or item type(s) and explain how number was determined One row per			
type/category.			
TOTAL ENVIRONMENT AND NATURAL RESOURCES TRUST FUND \$ REQUEST =	: \$	282,000	

V. OTHER FUNDS (This entire section must be filled out. Do not delete rows. Indicate "N/A" if row is not applicable.)

SOURCE OF FUNDS	AMOUNT	<u>Status</u>
Other Non-State \$ To Be Applied To Project During Project Period:	N/A	Indicate:
		Secured or
		Pending
Other State \$ To Be Applied To Project During Project Period:	N/A	Indicate:
		Secured or
		Pending
		_
In-kind Services To Be Applied To Project During Project Period: Unrecovered Indirect Costs	\$ 140,000	Secured
Past and Current ENRTF Appropriation:	\$-	Indicate:
		Unspent?
		Legally
		Obligated?
		Other?
Other Funding History:	\$-	

Magner Water Lab placing prototype sensor in Fleming Lake

07/29/2017

ENRTF ID: 033-A

Project Manager Qualifications & Organization Description

Joe Magner is a licensed professional hydrologist (WI), a licensed professional soil scientist (MN) and an American Institute of Hydrology registered professional hydrogeologist. He received degrees from the University of Wisconsin-River Falls and the University of Minnesota and has served as an environmental scientist and educator in varying roles for over 38 years; primarily with the MN Pollution Control Agency but also advising federal and local governments, including officials in China, India, Azerbaijan and South Africa. Additionally, Dr. Magner has also advised David Letterman, private sector consultants, NGOs.

He uses varying tools to assess, communicate protect and restore ecosystem services, ecohydrologic and hydrogeologic function. Dr. Magner is a research professor in the Department of Bioproducts & and Biosystems Engineering at the University of Minnesota. He teaches classes and advises students in water sensors, agroforestry, water quality, hydrology, ecological engineering and watershed management. Joe has over 80 publications and is a co-author of the 4th edition of *Hydrology and the Management of Watersheds* published by Wiley-Blackwell (2012).

Dr. Magner leads a water lab in the Department of Bioproducts & and Biosystems Engineering at the University of Minnesota. He has managed over 25 project varying in size and scope and has technicians and professionals who assist in his lab. Work objectives and tasks will be assigned to key staff for completion, but Dr. Magner will be responsible for completing the project on time and within budget.