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• Remote sensing methods developed to
map CDOM in 10,000 Minnesota lakes.

• Atmospheric correction and new
models for Landsat 8 OLI imagery im-
proved results.

• Ecoregions rich in wetlands and forest
have higher CDOM.

• CDOM increased with increased precip-
itation in forest/wetland-rich
ecoregions.

• CDOMdecreasedwith increased precip-
itation in agricultural ecoregions.
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Information on colored dissolved organic matter (CDOM) is essential for understanding and managing lakes but
is often not available, especially in lake-rich regions where concentrations are often highly variable in time and
space.Wedeveloped remote sensingmethods that can use both Landsat and Sentinel satellite imagery to provide
census-level CDOMmeasurements across the state of Minnesota, USA, a lake-rich landscape with highly varied
lake, watershed, and climatic conditions. We evaluated the error of satellite derived CDOM resulting from two
atmospheric correction methods with in situ data, and found that both provided substantial improvements
over previous methods. We applied CDOM models to 2015 and 2016 Landsat 8 OLI imagery to create 2015 and
2016 Minnesota statewide CDOM maps (reported as absorption coefficients at 440 nm, a440) and used those
maps to conduct a geospatial analysis at the ecoregion level. Large differences in a440 among ecoregionswere re-
lated to predominant land cover/use; lakes in ecoregions with large areas of wetland and forest had significantly
higher CDOM levels than lakes in agricultural ecoregions.We compared regional lake CDOM levels between two
years with strongly contrasting precipitation (close-to-normal precipitation year in 2015 and much wetter con-
ditions with large storm events in 2016). CDOM levels of lakes in agricultural ecoregions tended to decrease be-
tween 2015 and 2016, probably because of dilution by rainfall, and 7% of lakes in these areas decreased in a440 by
≥3m-1. In two ecoregionswith high forest andwetlands cover, a440 increasedbyN3m-1 in 28 and 31% of the lakes,
probably due to enhanced transport of CDOM from forested wetlands. With appropriate model tuning and
.
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validation, the approach we describe could be extended to other regions, providing a method for frequent and
comprehensive measurements of CDOM, a dynamic and important variable in surface waters.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Research in recent decades has revealed a central role for colored (or
chromophoric) dissolved organic matter (CDOM) in regulating major
physical, chemical and biological processes in lakes and rivers
(e.g., reviewed in Solomon et al., 2015, Williamson et al., 1999, Creed
et al., 2018, and elsewhere). We now know that CDOM functions as
one of a small number of “master variables, “ similar to phosphorus,
pH and redox potential, that control important aspects of the composi-
tion and functioning of aquatic ecosystems and regulate their responses
to environmental change (Williamson et al., 1999; Creed et al., 2018).
Recent studies show that CDOM levels strongly influence: (a) light
and thermal regimes in lakes (e.g., Houser, 2006; Ask et al., 2009;
Thrane et al., 2014; Pilla et al., 2018; Snucins and Gunn, 2000),
(b) biogeochemical cycles (e.g., Knoll et al., 2018; Corman et al., 2018),
(c) food web processes and interactions (e.g., Karlsson et al., 2009;
Solomon et al., 2015), (d) contaminant bioavailability (e.g., Tsui and
Finlay, 2011), and (e) water clarity (e.g., Brezonik et al., 2019a). Knowl-
edge of the sources, levels, and cycling of CDOM in freshwaters thus is
important for aquatic resourcemanagement and for predicting the out-
comes of environmental change.

Moderate to high levels of CDOM in freshwaters are determined
largely by rates of transport from soils andwetlands in surroundingwa-
tersheds and thus are affected by a combination of factors related to
vegetation and hydrology. The dependency of aquatic CDOM on dy-
namic external sources, combined with internal production and loss
processes in aquatic systems, can lead to high variability of CDOM levels
across landscapes and within lakes at time scales of seasons to years
(Brezonik et al., 2015, Williamson et al., 1999). Human-driven changes
in temperature, atmospheric chemistry, land use andwatershed hydrol-
ogy also can have strong effects on CDOM (Creed et al., 2018, Finstad
et al., 2016, Kritzberg, 2017, Stanley et al., 2012, de Wit et al., 2016).

Although CDOM is easily measured in the laboratory, the availability
of in situ CDOM data is surprisingly limited relative to its importance,
even in states like Minnesota, where monitoring of its N10,000 surface
waters is a major focus of many state, tribal and local agencies. Several
recent, large-scale assessments of regional U.S. lake monitoring efforts
(Stanley et al., 2012; Ross et al., 2019) showed that far fewer data
were available for CDOM and related variables such as DOC compared
to nutrients, chlorophyll, and water clarity, despite the strong effects
of CDOM on those and other physicochemical variables. The spatial
and temporal variation in CDOM in surface waters suggests the need
for more CDOM data to improve understanding of drivers and better
predict lake responses to stresses ranging from local land cover changes
to global climate change. Some countries with large numbers of CDOM-
rich lakes have incorporated routine monitoring of CDOM or a related
parameter such as DOC (e.g., Sobek et al., 2007). The relative lack of
CDOM data for U.S. lakes (Stanley et al., 2019) may stem from the fact
that many monitoring programs initially started in relatively low-
CDOM regions but also from the fact that the importance of CDOM as
a driver of ecological conditions has been appreciated only recently.

Whatever the cause, the availability of CDOM data remains deficient
compared to its importance. Remote sensing using satellite-based sen-
sors could play an important role in providing CDOM data at high tem-
poral and spatial resolution. Recent studies show that the Landsat
sensors (Kutser et al., 2005; Brezonik et al., 2005; Kutser et al., 2009;
Olmanson et al., 2016a), and Sentinel-2/MSI sensors (Toming et al.,
2016; Chen et al., 2017) can provide such data at scales relevant for in-
land lakes as small as 4 hectares (ha).
Recent improvements in Earth-observing satellite sensors have ex-
panded the capabilities tomeasure optically-relatedwater quality char-
acteristics, including CDOM, in lakes (Olmanson et al., 2016a; Tyler et al.,
2016; Pahlevan et al., 2019; Page et al., 2019). Specifically, the Landsat 8
Operational Land Imager (L8/OLI) and the European Space Agency
(ESA) Sentinel-2 MultiSpectral Imager (S2/MSI) have improved spatial,
spectral, radiometric and temporal resolution compared with earlier
sensors. With the L8/OLI and S2/MSI constellation collecting imagery
every 3 to 5 days, frequent satellite-based measurements of a variety
of key water quality variables on lakes are now possible.

The use of satellite imagery to measure CDOM at large regional
scales and over multiple time periods requires analysis of multiple im-
ages. Unless ground-based data are available to calibrate each image
(a requirement difficult to achieve), accurate methods are needed for
atmospheric correction of images to produce surface reflectance data di-
rectly representative of optical signals fromwaterbodies. Although var-
ious approaches have been reported to accomplish this (e.g., Pahlevan
et al., 2017a, 2017b; Vanhellemont and Ruddick, 2015, 2016), we have
found that many of them yield unreliable results for inland lakes
(Olmanson et al., 2011; Page et al., 2019). The recent availability of sur-
face reflectance products from the EROS Center appears to have over-
come this obstacle for Landsat 8 imagery (Kuhn et al., 2019), and Page
et al. (2019) described a workflow process to atmospherically correct
and harmonize S2/MSI and L8/OLI satellite imagery in Google Earth En-
gine (GEE) (Gorelick et al., 2017).

This paper describes application of these advances to measure
CDOM on all waterbodies larger than 4 ha across a large geographic re-
gion (the state of Minnesota) that encompasses N226,000 km2 and con-
tains officially 11,842 lakes 4 ha or larger in area (https://www.dnr.
state.mn.us/faq/mnfacts/water.html). The paper describes a robust
semi-empirical approach for routine monitoring of CDOM using L8/OLI
imagery. We demonstrate the consistency and reliability of two atmo-
spheric correction methods to generate remote sensing reflectance
(Rrs) products and use these products to assemble a CDOM database
on N10,500 lakes for both 2015 and 2016. We assess the accuracy of re-
trieved CDOM data for both low- and high-CDOM waters and summa-
rize distributions of CDOM in Minnesota lakes at the ecoregion level.
2. Methods

2.1. Study area

Minnesota, a large, lake-rich state in the Upper Midwest of the U.S.,
comprises parts of seven ecoregions (Omernik and Griffith, 2014) that
differ in land cover, geology, soils, vegetation and hydrologic conditions
(Fig. 1). Known popularly as “the land of 10,000 lakes,”Minnesota actu-
ally has approximately 12,000 waterbodies with surface areas ≥4 ha
(Olmanson et al., 2014) and many more that are smaller than that.
The lakes are distributed broadly (but not uniformly) across the
ecoregions. Two ecoregions, the Northern Lakes and Forests (NLF) and
North Central Hardwood Forest (NCHF), together comprise 49% of the
state's area and contain 84% of the state's lakes (47% and 37%, respec-
tively). According to Olmanson et al. (2014), about one-fourth of the
heavily forested NLF (mixed conifers and hardwoods) is wetlands and
lakes; only 4% is urban and 7% agricultural land. The high proportion
of forest (66%) and wetlands (14%) leads to high CDOM levels in many
NLF surface waters (Griffin et al., 2018; Brezonik et al., 2019a, 2019b).
In contrast, half of the NCHF is agricultural land, and about 10% is

https://www.dnr.state.mn.us/faq/mnfacts/water.html
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urban or suburban; forests account for only about 17% of the ecoregion,
and wetlands constitute 11% of the landscape.

The Western Corn Belt Plain (WCBP) occupies most of southern
Minnesota and is dominated (~77%) by row-crop agriculture (mainly
corn and soybean); its land cover is only ~7% forested. TheNorthernGla-
ciated Plains (NGP) ecoregion occupies a small region of southwest
Minnesota and is similar to the WCBP in agricultural land cover (74%)
but has a higher percentage of grassland (9%). Together, the WCBP
and NGP contain 12% of the state's lakes. The Lake Agassiz Plain (LAP)
ecoregion (Omernik and Griffith, 2014), formerly called the Red River
Valley ecoregion (Omernik, 1987), has the highest percentage (84%)
of agricultural land among the state's ecoregions, and the flat land is a
remnant of glacial Lake Agassiz. This ecoregion has only 215 lakes (2%
of the state's total). The Northern Minnesota Wetlands (NMW)
ecoregion is contiguous to the NLF and is similarly heavily forested
(52%). The NMW has more wetlands (19%), however, and its flat land-
scape contains few lakes, although three of the state's largest lakes,
Upper and Lower Red Lake and Lake of the Woods, are in the NMW.
The non-glaciated Driftless Area in southeastern Minnesota has only a
few small manmade ponds and reservoirs and backwater areas of the
Mississippi River.

2.2. Calibration data

A dataset of ground-based CDOM levels for satellite imagery calibra-
tion was developed from our ongoing CDOM studies (e.g., Griffin et al.,
2018; Brezonik et al., 2019a, 2019b) and includes data from theMinne-
sota Pollution Control Agency (MPCA) and several other agencies and
collaborators. Sampling in 2015 was focused in the NLF and NCHF in
northern Minnesota (Fig. 1) and was expanded to include the NMW
ecoregion in 2016 and the WCBP, NGP, and LAP ecoregions in 2017.
Fig. 1. Minnesota 2013 land cover map (Rampi et al., 2016) w
Most lakes were sampled only once, but a selection of lakes were sam-
pled once each year and a few were sampled approximately monthly
in 2016 or 2017. Details of sampling were provided previously (Griffin
et al., 2018; Brezonik et al., 2019a, b). All observations (site-date combi-
nations)were treated separately; i.e., multiple samples froma lakewere
not averaged. A total of 1586 CDOMmeasurements were collected over
2015–2018, many from routine monitoring efforts by collaborators
(Brezonik et al., 2019a). These efforts provided a large dataset of field
measurements for calibration and validation.

Sampling procedures and field and laboratory analyses followed
standard limnological practices. Detailed methods were described by
Griffin et al. (2018). In brief, most water samples were collected from
~0.25 m below the lake surface; the MPCA samples were a 0–2 m inte-
grated sample of the epilimnion. Water for CDOM analysis was filtered
through 0.45 μm Geotech High Capacity filters and stored in the dark
at 4 °C in pre-ashed 40 mL amber glass bottles until analysis within
1 month of collection. Samples for DOC were acidified using 2 M HCl
and stored in pre-ashed 20 mL glass bottles at 4 °C. Other samples
were stored in acid-washed and triple-rinsed polycarbonate or high-
density polyethylene bottles and filtered for analysis of various dis-
solved constituents within 24 h of collection.

CDOM was determined from absorbance measurements at 440 nm,
using a Shimadzu 1601UV-PC dual beam spectrophotometer through
1 or 5 cm quartz cuvettes against a nanopure water blank. Absorbance
was converted to Napierian absorption coefficients (Kirk, 2010) using:

a440 ¼ 2:303A440=l ð1Þ

where: a440 is the absorption coefficient at 440 nm, A440 is absorbance at
440 nm, and l is cell path length (m). Absorbance scans were blank-
corrected before conversion. CDOM values are reported as a440 (m-1).
ith ecoregion boundaries (Omernik and Griffith, 2014).



4 L.G. Olmanson et al. / Science of the Total Environment 724 (2020) 138141
2.3. Image acquisition and processing

A critical component of image processing for aquatic environments
is a consistent atmospheric correction (AC) method that can yield reli-
able estimates of the surfacewater-leaving reflectance (ρw), an optically
active input parameter for various satellite-based water quality models
(Gordon andWang, 1994). We evaluated atmospherically corrected L8/
OLI remote sensing reflectance (Rrs= ρw / π) products derived from the
ModifiedAtmospheric Correction for INlandwaters (MAIN) (Page et al.,
2019) method implemented in Google Earth Engine (GEE) (Gorelick
et al., 2017) tomap CDOM inMinnesota lakes.Mean Rrs values were ex-
tracted from a 50-m buffer around each sample location within the
open water area of each lake using a collection of clear imagery from
L8/OLI to develop a CDOM retrieval algorithm. Paths of clear L8/OLI im-
agery with coincident field data from 2015 and 2016 were used for
model calibration, and coincident L8/OLI and S2/MSI imagery from
2018 were used with corresponding field data for independent valida-
tion of the results. Finally, Rrs values from theU.S. Geological Survey Sur-
face Reflectance Product (OLI-SR version 1.3.0) also were evaluated for
cross-model comparisons.

2.4. CDOM modeling approach

Because CDOM concentrations in most lakes are stable on at least a
short-term basis (days to weeks) (e.g., Brezonik et al., 2015), we used
calibration/validation data that had been collectedwithin 30 days of im-
agery. This yielded 250 calibrationmeasurements corresponding to five
clear paths of L8/OLI imagery in 2015 and 2016 (Table 1). An additional
157 measurements from MAIN-processed coincident Landsat 8 and
Sentinel-2 imagery for August 13, 2018 were used for independent val-
idation and harmonization of the L8/OLI and S2/MSI sensors (Table 1);
62 of these measurements corresponded with clear L8/OLI imagery
and 95 corresponded with clear S2/MSI imagery. The calibration set in-
cluded lakes distributed across the state with a wide range of CDOM
(a440 = 0.2–32.5 m-1). The CDOM range in the validation set fit closely
with the calibration set at low to moderate CDOM levels (up to a440
~10 m-1) but lacked higher values (Table A1) because wildfire smoke
(originating in California USA and Canada) caused haze interference in
northern Minnesota, where the high CDOM lakes occur, for the August
13, 2018 validation imagery.

To explore the potential of all available OLI bands and band ratios to
predict CDOM, modeled as ln(a440), we used the bootstrap forest tech-
nique in JMP Pro 14 SAS Institute (2018) and evaluated themost signif-
icant combinations. The calibration dataset of measured a440 values
corresponding with the five clear L8/OLI image paths was used as the
dependent variable (Tables 1 and A1), and MAIN-derived (and OLI-
SR)mean Rrs values for L8/OLI bands B1–B5 and all band-ratio permuta-
tions were the independent input variables (26 total terms). The two
Table 1
Landsat 8 images used for calibration/validation and images used for 2015 and 2016–17
CDOMmaps and associated number of ground-based (a440) measurements.

Purpose Sensor Date Path Rows N

Calibration, 2015 map L8/OLI 8/14/2015 26 27–28 33
2015 map L8/OLI 9/20/2015 29 26–28
Calibration, 2015 map L8/OLI 9/29/2015 28 26–30 24
2015 map L8/OLI 11/7/2015 29 26–29
Calibration, 2015 map L8/OLI 11/9/2015 27 26–30 9
Calibration, 2016 map L8/OLI 7/22/2016 27 26–29 53
Calibration, 2016 map L8/OLI 8/30/2016 28 26–28 131
2016 map L8/OLI 11/4/2016 26 26–30
2016 map L8/OLI 11/9/2016 29 26–30
2016 map L8/OLI 11/11/2016 27 26–30
2016 map L8/OLI 5/13/2017 28 28–30
2016 map L8/OLI 9/9/2017 29 26–30
Validation S2/MSI 8/13/2018 MN_Middle MN_N 95
Validation L8/OLI 8/13/2018 27 28–30 62
highest-contributing terms that produced the highest coefficient of de-
termination (R2) and lowest root mean square error (RMSE) withmea-
sured data were identified using step-wise regression and were used to
develop the models.

To evaluate model predictive capability, the data were divided into
four randomized groups. For each possible combination, three groups
were used as a training set to develop a correlation, and the remaining
groupwas used as a confirmation set. Performance of themodels gener-
ated from the four randomly selected calibration/confirmation datasets
was evaluated from the coefficient of determination (R2) and rootmean
square error (RMSE) formodel-predicted vs.measured a440, and the av-
erage and range of performance of the four datasets were calculated
(Table A2).

As an additional check on the consistency of the model over a
broader temporal scale and MAIN harmonization of L8/OLI and S2/MSI
Rrs values, we applied themodel derived from L8/OLI imagery to the in-
dependent validation datasets described above (Table 1). Accuracy was
compared against measured a440 for each validation image using mean
absolute error (MAE)

MAE ¼

X

i¼1

n

j a440;sensor−a440;in situ j

n
ð2Þ

where a440,sensor is either a440,MSI or a440,OLI. MAE= 0 indicates a perfect
fit.

2.5. Statewide CDOM database

To create the 2015 statewide CDOM map, we used five clear paths
(i.e., images from the same path and date but from multiple rows, two
to five, to cover the state) of L8/OLI imagery (Table 1). For the 2016
map there were five mostly clear paths from 2015, but because a few
areas in western Minnesota did not have any clear imagery in 2016,
we also used two clear paths of 2017 L8/OLI imagery to fill in missing
areas to complete the 2016 map (Table 1). To produce maps, the vali-
dated CDOM model was applied to the corresponding selected MAIN-
derived Rrs bands in the GEE application program interface (API)
(Page et al., 2019) for each path of imagery (Table 1) used for the
2015 and 2016 CDOM maps and exported in GeoTIFF format. The
pathsweremosaicked into statewidemaps using ERDAS Imagine to cre-
ate 2015 and 2016 pixel-level CDOM maps for Minnesota. To create a
lake-level database, we used a polygon layer previously constructed
(Olmanson et al., 2008) to include all Minnesota lakes, reservoirs and
open-water wetlands ≥4 ha and the signature editor in ERDAS Imagine
to extract a440 data for all lakes in the images using the lake polygon
layer. The GetHist program (Olmanson et al., 2008) was used to calcu-
late the mean a440 values from the middle 70% and linked to each lake
polygon to create lake-level maps for 2015 and 2016.

To compile the data for analysis of CDOM at the ecoregion level, we
used Esri ArcMap 10.5.1 to link each lake polygon to its respective
ecoregion, and JMP Pro 14 to calculate CDOMdistributions for eachMin-
nesota ecoregion.

3. Results and discussion

3.1. CDOM model results

After exploration of various two-term regression models using L8/
OLI data, we identified the best model as having the form:

ln a440ð Þ ¼ a Rrs B4ð Þ=Rrs B3ð Þð Þ þ b Rrs B5ð Þ=Rrs B3ð Þð Þ þ c ð3Þ

where coefficients, a, b, and c were fit to the calibration data by regres-
sion analysis, ln(a440) is the natural logarithmof the L8/OLI-derived a440
for a given sample location and B represents the corresponding L8/OLI



Table 2
Error analysis for (a) L8 calibration dataset of MAIN and EROS SR CDOM models and
(b) validation dataset for L8 and S2 models showing mean absoulte error (MAE) in three
ranges of a440.

Model CDOM range (a440, m-1)

0–3 3–10 10–33 All

(a) Calibration data
MAE (MAIN), m-1 0.42 1.79 6.07 1.61
MAE (EROS SR), m-1 0.43 2.05 7.10 1.82
Na 147 67 36 250

(b) Validation data
L8-OLI MAE, m-1; (N) 1.46 (49) 2.26 (12) 2.43 (1) 1.63 (62)
S2-MSI MAE, m-1; (N) 1.58 (79) 2.90 (15) 2.93 (1) 1.80 (95)

a N is the number of data points in each range.
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spectral band. From the combined L8/OLI dataset, the ln(a440) predic-
tion model generated a strong fit with R2 = 0.85 and RMSE = 0.49 for
MAIN, and R2 = 0.83 and RMSE = 0.52 for OLI-SR (Table A2, Fig. 2).
MAIN-based results also fit closer to the 1:1 line than OLI-SR results,
but both methods provided a better fit in the lower and higher ranges
than our previous efforts (Olmanson et al., 2016a, 2016b).

To evaluate model performance in different CDOM ranges, we split
the data into low, medium and high sets (a440 = 0.2–3.0, 3–10 and
10–32.5 m-1, respectively) and calculated MAE (Table 2a). In all ranges,
MAIN-corrected imagery had lower MAE values than OLI-SR-corrected
imagery, and although the MAE increased with a440, the values were a
relatively small fraction of the median a440 for the range. We also plot-
ted measured a440 from low to high with model predicted a440 for
MAIN and OLI-SR (Fig. 3). MAIN-based results fit closer to the line for
field measured a440 than OLI-SR results and deviation from the line for
field measured a440 increased with increasing CDOM.

The use of MAIN or OLI-SR image correction together with the best-
fit model resulted in substantial improvements in CDOM estimation
compared to previous methods, largely due to improved atmospheric
correction and a relatively large and varied in situ dataset (Fig. 2). In
comparison with other models in the literature, the green/red model
of Kutser et al. (2005) and red/green model of Menken et al. (2006)
when applied to the combined L8/OLI dataset generated comparatively
weak linear regressions with ln(a440): R2 values of 0.46 and 0.51, re-
spectively, and higher RMSE values of 0.93 and 0.88, respectively
(Table A2). The green/blue, red model of Griffin et al. (2011), which
uses the blue band, where CDOM absorption is much stronger, gener-
ated no convincing relationship (average R2 = 0.04, RMSE = 1.24),
which indicates interference from other optically active constituents
(Table A2). Compared against previous models, our approach offered
substantial improvements in a440 measurements especially in the
higher and lower ranges.

3.2. CDOM model validation

The semi-empirical model developed here was applied to some
2015, 2016 and 2017 L8/OLI images thatwere not used formodel devel-
opment to complete the 2015 and 2016 CDOMmaps for Minnesota. Be-
cause these data do not have in situ validation data it is important to use
an independent validation dataset to determine the accuracy that can
be expected when the model is used on images not included in the cal-
ibration dataset. The validation dataset consists of overlapping L8/OLI
and S2/MSI images acquired on August 13, 2018 that were mostly
clear but had visible wildfire smoke in northern Minnesota. The L8/OLI
Fig. 2. Landsat 8 CDOMmodels using MA
validation data for the low andmediumCDOMranges resulted in higher
MAE values (1.46 and 2.26 m-1, respectively) than found for the corre-
sponding calibration results (MAE = 0.42 and 1.79 m-1, respectively)
using Eq. (2) (Table 2b). The MAE of 1.63 m-1 for the whole validation
dataset is comparable to that for the calibration dataset with a MAE of
1.61m-1, likely because of the lack of high CDOMvalues in the validation
data (because the haze problem in northern Minnesota imagery). De-
spite the lack of high CDOM lakes, the validation data range still repre-
sented a large majority (N 92%) of surface waterbodies in Minnesota;
CDOM values N10 m-1 occurred in only 8% of the state's surface waters.
If we consider only lakes and reservoirs and exclude open-water wet-
lands (i.e. shallowerwaterbodies that have abundant aquatic vegetation
but include open-water areas where CDOM measurements can be ex-
tracted), CDOM N10 m-1 occurred in only 6% of the lakes. The S2/MSI
validation dataset yielded larger MAE values of 1.58 and 2.90 m-1

(Table 2b) for the low and medium CDOM ranges than corresponding
values for the calibration data (0.43 and 2.05 m-1, Table 2a). The larger
errors could indicate that the validation imagery is less than ideal, espe-
cially for the lower CDOMvalues, because smoke effects may have been
more widespread than what was obvious for northern Minnesota. Nev-
ertheless, the MAE values indicate acceptable confidence in the
resulting maps.

3.3. Geospatial analysis of statewide CDOM database

For geospatial analysis of CDOMat the ecoregion level, we calculated
the mean CDOM value for each waterbody (i.e. lakes, reservoirs and
open-water wetlands) using the pixel-level maps for 2015 and 2016
(Figs. A1 and A2, respectively). These maps are also available in an
IN (left) and SR (right) Rrs products.



Fig. 3. In situ a440 data sorted from low to highwith resultingMAIN and SRmodel-derived
a440 showing increasing divergence with increasing in situ a440. The shading represents
low, medium, and high CDOM levels.
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online LakeBrowser at https://lakes.rs.umn.edu/. Satellite-derived a440
values encompassed broad ranges – from near undetectable (0.1 m-1)
to ~25.5 m-1 in both years. Standard deviations across all waterbodies
for both years were larger than the mean values, and median values
were less than the mean values (Table 3) indicating skewed distribu-
tions, with many more low-CDOM waterbodies than high ones. Large
differences in means, medians and statistical distributions were found
between the ecoregions, with high CDOM waters concentrated mainly
in the NLF and NMW. Nonetheless, a few waterbodies had high CDOM
levels in all ecoregions in both years. Standard deviations for a440 within
all ecoregionswere close to or larger than themean values, consistently
indicating skewed distributions. Mean a440 and distributional statistics
were similar for the four southern and western ecoregions (NCHF,
WCBP, NGP, LAP), and in all cases 90% of their waterbodies had
a440 b ~6 m-1.

Using the individual waterbody data for both years, we calculated
the 2015–2016 mean value for each waterbody and created a “lake-
Table 3
Summary statistics and quantile information for 2015 and 2016 CDOM (a440, m-1) in
waterbodies of Minnesota's six main ecoregions.

Statistic Ecoregion

All NLF NMW NCHF WCBP NGP LAP

a). All measured waterbodies: 2015
Mean 3.54 4.83 6.45 2.05 3.25 2.99 2.89
Std dev 4.28 5.37 5.89 1.96 3.29 2.92 2.99
Std err mean 0.04 0.07 0.64 0.03 0.14 0.14 0.15
Minimum 0.16 0.16 0.71 0.20 0.25 0.55 0.30
Quantiles: 10% 0.76 0.69 1.18 0.79 1.02 1.10 0.95
25% 1.15 1.17 2.22 1.07 1.55 1.52 1.30
Median (50%) 1.91 2.52 4.60 1.57 2.29 2.08 1.87
75% 3.82 6.69 7.96 2.32 3.57 3.30 3.19
90% 8.62 12.83 17.27 3.46 6.05 5.56 5.77
Maximum 25.50 25.50 25.50 25.50 25.50 25.50 23.60
N 10,782 5081 83 4196 583 407 402

b) All measured waterbodies: 2016
Mean 4.90 7.53 9.70 2.58 2.50 2.49 2.13
Std dev 6.72 8.40 7.91 3.57 2.32 2.91 2.65
Std err mean 0.06 0.11 0.83 0.05 0.08 0.14 0.13
Minimum 0.10 0.20 0.51 0.21 0.32 0.10 0.20
Quantiles: 10% 0.67 0.70 1.23 0.64 0.79 0.72 0.51
25% 1.03 1.22 2.93 0.92 1.18 1.00 0.81
Median (50%) 1.93 3.26 6.99 1.48 1.81 1.62 1.37
75% 4.81 11.89 16.69 2.59 2.85 2.87 2.29
90% 17.03 23.59 23.44 5.02 4.84 5.18 4.30
Maximum 25.50 25.50 25.50 25.50 19.44 25.50 23.70
N 11,565 5337 91 4451 748 411 406
level”map (Fig. 4). The associated statistical distributions by ecoregion
(Fig. A3 and Table 4a) are similar to those described above for the indi-
vidual years. The mean a440 values for the two most northern
ecoregions (NLF and NMW) were higher than the means for the other
four ecoregions in both years and for the average over the time period,
and the differences were even more pronounced for the 75% and 90%
quantile values. For example, 10% of the waterbodies in the NLF and
NMW had average a440 values N17.5 m -1 in 2015–2016, but the 90%
quantile values for the other four ecoregions were only 4.4–5.4 m-1

(Table 4a).
Waterbodies with high CDOM tend to have watersheds dominated

by forests and wetlands, but further inspection of high CDOM
waterbodies in agricultural ecoregions (e.g., WCBP, NGP) indicated
that they were mainly open-water wetlands with abundant aquatic
vegetation, where vegetation and bottom effects could affect Rrs and
provide erroneous resultswith satellite imagerymethods. Ideally, pixels
affected by aquatic vegetation or bottom sediment would be masked
because they are unsuitable for remotely sensed estimates of water
quality. Open-water wetlands were not well represented in the calibra-
tion dataset, however, because they typically are ringed with emergent
vegetation and are difficult to access. Becausemasking all affected pixels
is not always possible in large regional assessments, it is important to
know the limitations of the analysis and whether the satellite-based
measurements are realistic for the waterbodies that are being studied.
Open-water wetlands tend to have high DOM concentrations, which
suggests that the satellite-based measurements are correct, but this
issue needs further investigation in future studies.

Tominimize the effects of shallower open-waterwetlands on CDOM
statistical distributions, we removed these waterbodies from the
dataset and found distributions (Fig. A4 and Table 4b) similar to those
in Table 4a but with fewer high CDOM waters in the agricultural
ecoregions. Overall, mean a440 values and distributional statistics (ex-
cept for maximum values) were slightly lower in all ecoregions for the
subset without open-water wetlands. For example, for the four
ecoregions with low average CDOM levels, the 90% quantile values
were ~80% of the corresponding values for the dataset that includes
the shallow open-water wetlands (Table 4a), suggesting that on aver-
age, open-water wetlands tend to have slightly higher CDOM levels
than lakes and reservoirs.

3.4. Potential sources of error

Considering error levels indicated by MAE, atmospheric correction
by MAIN resulted in lower error than using OLI-SR (Table 2a, Fig. 3),
with overall MAE averages of 1.61 and 1.82 m-1, respectively. MAE
values for both correction methods increased across the three CDOM
ranges (low, medium, high) with MAIN and OLI-SR, and they repre-
sented ~25–30% of the midpoint a440 values of each range. Although
the model developed using L8/OLI imagery worked reasonably well
with our validation S2/MSI imagery, MAE values for the validation set
were consistently lower for L8/OLI than for S2/MSI. Further research
with a larger dataset would help to determine whether a separate S2/
MSI model could improve the relationship with measured data.

Although Brezonik et al. (2015) concluded that CDOM is generally
stable on intra-seasonal time scales, we found large fluctuations in
CDOM in some highly colored lakes in flowage systems (i.e., with
large watersheds relative to lake areas) following large storm events
in summer of 2016. For this study, we used CDOM data within 30 days
of image acquisition, but because numerous storm events occurred in
the state during summer of 2016, this could have been too large a win-
dow for some highly colored flowage lakes and could account for some
of the overall error. The low Rrs signals from high-CDOM, low-
suspended solids water and potential errors in atmospheric correction
of such waters also could be contributing factors.

Differences between satellite and field measurements could origi-
nate from many sources including (1) differences in spatial coverage

https://lakes.rs.umn.edu/


Fig. 4.Mean 2015–2016 lake-level CDOMmap with blowup of the Ely lakes area.
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(20–30 m pixels vs. a single grab sample), (2) temporal variations in
CDOM between the time of satellite overpass and sample collection,
(3) errors in collection and laboratory analyses, (4) differences that
may arise in predicting measured a440 from any retrieval model, and
(5) satellite atmospheric correction errors. The latter potentially may
have been exacerbated by haze differences due to smoke in the valida-
tion vs. the calibration dataset in this study. Given these issues and some
uncertainties associatedwith the representativeness offield data, itmay
be better simply to regard satellite-based methods as the standard
Table 4
Summary statistics and quantile information for 2015–2016 average CDOM(a440, m-1) for all me
nesota and its six main ecoregions.

Statistic Ecoregion

All NLF NMW

a) All measured
Mean 4.34 6.31 8.47
Std dev 5.34 6.63 6.70
Std err mean 0.05 0.09 0.70
Minimum 0.10 0.10 0.70
Quantiles: 10% 0.80 0.74 1.54
25% 1.19 1.29 2.64
Median (50%) 2.03 3.20 6.11
75% 4.63 9.76 13.54
90% 12.79 17.54 17.62
Maximum 25.50 25.50 25.50
N 11,625 5378 91

b) Lakes and re
Mean 4.21 5.98 7.30
Std dev 5.34 6.43 6.56
Std err mean 0.06 0.10 0.81
Minimum 0.10 0.10 0.70
Quantiles: 10% 0.75 0.71 1.29
25% 1.08 1.20 2.15
Median (50%) 1.84 2.92 5.38
75% 4.50 9.15 10.43
90% 12.97 16.89 17.40
Maximum 25.50 25.50 25.16
N 8182 4461 65
values for census-level CDOM data at regional scales. Ground-based
measurements are simply infeasible to gather at such spatial scales
and short timescales. Of course, use of clear imagery and appropriately
calibrated models is essential for accurate results.

3.5. Applications to research and management

CDOM data for thousands of lakes measured at seasonal to annual
time scales with the satellite imagery methods described here are
asuredwaterbodies and lakes and reservoirs (without open-waterwetlands) only inMin-

NCHF WCBP NGP LAP

waterbodies
2.46 2.87 2.81 2.56
2.94 2.36 2.69 2.64
0.04 0.09 0.13 0.13
0.24 0.34 0.53 0.25
0.80 1.00 1.02 0.79
1.08 1.46 1.39 1.13
1.60 2.21 1.91 1.72
2.52 3.34 3.22 2.77
4.40 5.38 5.37 5.16

25.50 15.82 25.50 22.14
4462 753 411 408

servoirs only
1.92 2.28 2.37 2.11
1.98 1.67 1.66 2.17
0.04 0.10 0.12 0.16
0.31 0.49 0.53 0.25
0.76 0.91 0.88 0.71
0.97 1.22 1.27 1.06
1.40 1.78 1.87 1.44
2.11 2.69 3.08 2.32
3.35 4.28 4.55 4.07

25.50 13.52 10.39 20.94
2911 279 183 188
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invaluable for lake management and research. CDOM directly affects
many important characteristics of lakes, such as temperature and light
regimes, primary production, and carbon cycling. It also affects many
variables relevant to lake management, including fisheries production
and contaminant concentrations and reactivity. Despite its important
role, in situ data for CDOM are much more limited compared to other
key variables, such as chlorophyll and phosphorus (Stanley et al.,
2019). Thus, frequent measurement of CDOM at regional scales repre-
sents an important resource for research and management.

To illustrate the use of large-scale CDOM measurements, we exam-
ined the changes in CDOM levels between two consecutive years with
contrasting rainfall. Using the lake subset (Table A3), we analyzed the
change in a440 between 2015 and 2016. Comparison of precipitation
ranking maps for 2015 and 2016 shows major contrasts in hydrologic
regimes between the years, with 2015 fairly typical for most areas and
2016 unusually wet for most of the state, including the NMW and NLF
ecoregions (Fig. A5). Comparing CDOM levels between years 2015 and
2016 (Table A4), we found that levels decreased by at least 3 m-1 in
about 7% of the lakes in agricultural ecoregions (LAP, NGP and WCBP),
but levels increased in the ecoregions with more forest and wetlands
(Fig. 5). Within the NMW and NLF ecoregions, 31% and 28% of the
lakes, respectively, had changes in a440 ≥ 3 m-1, but only 5% of the
lakes in the NCHF (a transition ecoregion) changed N3 m-1. It also is in-
teresting to note that themean andmedian a440 values for the twohigh-
CDOMecoregions (NLF andNMW) increased substantially from2015 to
2016 (Table A3). In contrast, in almost all cases these statistics de-
creased in the ecoregions with more agricultural and less forest/wet-
land land cover, apparently because of dilution by increased
precipitation. Although CDOM is generally stable at timescales of
weeks tomonths for many lakes, this analysis suggests that lakes inwa-
tersheds with large CDOM source areas (i.e. forested wetlands) can ex-
hibit substantial precipitation-driven variability. de Wit et al. (2016)
made similar conclusions based on analysis of long-term precipitation
and CDOM records in Scandinavia, and our calibration database also
supports this conclusion. This example provides an illustration of the
Fig. 5. Percent change in a440from 2015 to 2016 for each ecoregion. Increase of a440 from 2015 to
forest and wetlands (NLF and NMW) while a440 decreases are in agricultural ecoregions (LAP,
utility of remote sensing methods to quantify CDOM changes in re-
sponse to environmental drivers such as precipitation, temperature
and land cover changes.
4. Conclusions

This paper demonstrates that remote sensing using satellite-based
sensors can play an important role in providing census-level CDOM
data over large areas at high temporal and spatial resolution. The con-
stellations of L8/OLI, upcoming Landsat 9/OLI and Sentinel 2/MSI will
greatly expand the capabilities to measure several optically-related
water quality characteristics, including CDOM.

Strong relationships for CDOM (a440) were found using both MAIN
and OLI-SR atmospheric correction methods. Atmospheric correction
usingMAIN substantially improvedmodel performance, and has the ad-
vantage of being able to harmonize the Rrs values of L8/OLI and S2/MSI,
whichwill be important for automated image processing and near real-
time monitoring. The range of a440 values in our calibration dataset
(0.2–32.5 m-1) likely represents the general distribution of CDOM
throughout Minnesota.

Although further investigation of CDOM levels in shallow open-
water wetlands of agricultural areas should be undertaken, our results
indicate that assessment of CDOM at regional (statewide) scales is fea-
sible using Landsat and Sentinel data. Such assessments can provide
the basis for numerous regional-scale analyses related to CDOM, such
as (a) identification of temporal changes, as discussed above,
(b) evaluating water clarity issues (e.g., Brezonik et al., 2019a),
(c) quantifyingpatterns of temperature structure, (d) estimating carbon
storage andmercury levels in lakes and wetlands, (e) predicting photo-
chemical reaction rates in surface waters, and (f) assessing water treat-
ability metrics, such as chlorine demand and disinfection byproduct
formation (Chen et al., 2019). This approach could be extended to
other regions, providing similar results with appropriate model tuning
and validation.
2016 due to increased precipitation in 2016 is focused in ecoregionswith high coverage of
NGP and WCBP). Histograms follow order of ecoregion labels in the map.
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