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Abstract

This article considers the problem of finding a shortest tour to visit viewing sets of points on a plane. Each viewing set is

represented as an inverted view cone with apex angle a and height h. The apex of each cone is restricted to lie on the

ground plane. Its orientation angle (tilt) e is the angle difference between the cone bisector and the ground plane normal.

This is a novel variant of the 3D Traveling Salesman Problem with Neighborhoods (TSPN) called Cone-TSPN. One appli-

cation of Cone-TSPN is to compute a trajectory to observe a given set of locations with a camera: for each location, we

can generate a set of cones whose apex and orientation angles a and e correspond to the camera’s field of view and tilt.

The height of each cone h corresponds to the desired resolution. Recently, Plonski and Isler presented an approximation

algorithm for Cone-TSPN for the case where all cones have a uniform orientation angle of e = 0. We study a new variant

of Cone-TSPN where we relax this constraint and allow the cones to have non-uniform orientations. We call this problem

Tilted Cone-TSPN and present a polynomial-time approximation algorithm with ratio O 1 + tana
1�tan e tana

1 + log max (H)
min (H)

� �� �
,

where H is the set of all cone heights. We demonstrate through simulations that our algorithm can be implemented in a

practical way and that by exploiting the structure of the cones we can achieve shorter tours. Finally, we present experi-

mental results from various agriculture applications that show the benefit of considering view angles for path planning.

Keywords

Path planning, view planning, approximation algorithms, geometric algorithms, euclidean traveling salesman
problem, traveling salesman problem with neighborhoods

1. Introduction

Consider the task of an aerial vehicle charged with collecting

images of a given set of locations. Such tasks arise in many

applications such as crop monitoring, animal tracking, and

road inspection. In this article, we study a novel coverage

problem inspired by this scenario. We associate each mea-

surement with an inverted cone apexed at the location of

interest. The height of the cone is associated with the desired

resolution and the apex angle corresponds to the camera’s

field of view (FOV). In other words, each cone encodes the

set of view points from which a target can be imaged at a

desired location. See Figure 1. The task is to visit a given set

of cones so as to ensure that all locations are covered.

Coverage is a fundamental problem in robotics and has

been studied extensively (Choset, 2001; Galceran and

Carreras, 2013). A coverage tree structure was proposed in

Sadat et al. (2014) allowing for online, non-uniform adap-

tive coverage with an unmanned aerial vehicle (UAV).

However, this strategy cannot provide any guarantees on

the trajectory length which coupled with the UAV’s limited

battery might result in an incomplete tour. The work of

Cheng et al. (2008) provides a constant factor solution for a

UAV covering an urban building with a camera sensor. In

contrast to our work, the orientation angle of the camera

was fixed to look downwards. Complete coverage of a tree

surface using right angular cones was used by Stefas et al.

(2016) for a UAV flying at a low altitude inside an orchard.

However, non-uniform tilt angle views were not considered.

A sampling-based methodology to generate trajectories for

coverage of 3D objects with unmanned underwater vehicles

was presented by Englot and Hover (2013). Similar to our

work, the authors achieved short trajectories and applied

their method to underwater ship hull inspection. More

recently, informative path planning problems in which

mobile robots aim to maximize an objective function
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related to information gain were studied by Singh et al.

(2009) and Low et al. (2008). When the locations to be cov-

ered are known ahead of time, we can compute an optimal

trajectory to visit them.

The basic task of visiting a given set of locations is the

Traveling Salesman Problem (TSP) which admits a

polynomial-time approximation scheme (PTAS) for the

Euclidean version (Arora, 1998; Mitchell, 1999). If we

incorporate sensor footprint as a set of given areas instead

of points we wish to visit, then we have the Traveling

Salesman Problem with Neighborhoods (TSPN), which is

APX-hard (de Berg et al., 2005; Safra and Schwartz, 2006).

TSPN in two dimensions is a well-studied problem and

many researchers have provided approximation algorithms

for various cases (Reinelt, 1994). Euclidean TSPN has been

shown to admit a PTAS if the neighborhoods have a well-

defined structure (Dumitrescu and Mitchell, 2001; Mitchell,

2007). A constant factor approximation was shown in

Dumitrescu and Tóth (2015) for arbitrary, planar disks.

TSPN in three dimensions is a more difficult problem. A

PTAS was provided by Bodlaender et al. (2009) for disjoint

polygons of comparable size and a quasipolynomial-time

approximation scheme (QPTAS) was provided by Chan and

Elbassioni (2011) for a-fat, weakly disjoint neighborhoods.

Dumitrescu and Tóth (2016) presented a constant factor

approximation when the neighborhoods take the form of

unit balls, lines, or planes. Recently, in Plonski and Isler

(2019), we presented a polynomial-time approximation

algorithm for the 3D TSPN with intersecting neighborhoods

when the neighborhoods take the form of right angular

(non-tilted) cones and their apex points lie on a planar sur-

face. We called this problem Cone-TSPN. Our approach

was based on the idea that by intersecting the cones with a

set of horizontal planes we can reduce the problem to that

of equal size disks on the plane with a number of upper

bounded detours. There are instances when it is desirable to

have tilted cones. For example, carefully chosen tilted views

might be required if visibility of the target area is limited

(see Figure 1) or when covering reflective surfaces (see

Figure 2). In Section 2, we demonstrate with quantitative

results that in such cases we can obtain more visual infor-

mation (i.e., better views) if we introduce cones with differ-

ent tilt angles. We address this problem in this article.

The Cone-TSPN strategy presented in Plonski and Isler

(2019) is not directly applicable for input view cones of

varying orientation (or tilt) and cannot provide theoretical

guarantees. Removing the assumption that the cones are

right angular (not tilted) requires addressing a number of

challenges. When the cones are allowed to tilt, their inter-

section with a horizontal plane is no longer a disk but an

ellipse. This means that we can no longer use a PTAS

TSPN tour for disks to visit the cones on the plane. Instead,

we use a PTAS TSP on their center and bound the length

of this tour with respect to the optimal solution. More

importantly, the relative arrangement of the cones change

as they tilt and the previously planned detours cannot guar-

antee complete coverage of all cones (see Figure 3 for an

example). We need to modify and possibly add additional

detours (see Section 6 for details). These challenges arise

when the cones have uniform orientation angles. The prob-

lem becomes even more challenging if we let the cones

have non-uniform orientation angles. We address this chal-

lenge by grouping the cones by similar angles and further

modifying the detour strategy to guarantee coverage of all

cones in the same group (see Section 7). In this work, we

Fig. 1. In order for a UAV to capture images of a target animal it

needs to enter an inverted view cone Ci, positioned at Xi with

orientation vector ~ai and apex angle a ł cameraFOV

2
. The height hi

of the cone is relative to the desired resolution. If visibility is

occluded, the view cone Ci may need to be tilted by an angle ei.

Fig. 2. When covering watery fields such as wild rice (left

image), sunlight reflection can be a problem (right image). By

choosing our view angles carefully we can reduce sunlight

specularities.

Fig. 3. When using the non-Tilted Cone-TSPN strategy we plan

two detours, an inner and outer concentric circular path to ensure

all cones that intersect cone Ci are visited. This is illustrated with

cones Ci and Cj (left). However, if cone Ci tilts, these two

detours can no longer guarantee that all cones intersecting it will

be visited because the relative arrangement of the cones can

change. This is illustrated with cones Ci and Ck (right). Cone Ck

can be placed such that it intersects cone Ci but lies in between

the two previously planned detours and is not covered by them.
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extend Cone-TSPN and provide a polynomial-time approx-

imation algorithm for tilted input view cones.

The rest of the article is organized in the following way.

The problem statement is presented in Section 3. Our analy-

sis starts with disjoint cones of similar height and identical

(uniform) orientation in Section 4. Then, we study the cases

where the cones do not have similar heights in Section 5

and are not disjoint in Section 6. We conclude our analysis

with non-disjoint cones with varying (non-uniform) orienta-

tion in Section 7 and evaluate the performance of our algo-

rithm in Section 8. Complete proofs for the analyses of

Sections 4, 5, 6, and 7 are included in the appendix. Finally,

in Section 2, we show our quantitative results for two differ-

ent agriculture applications with different view angles and

discuss future work in Section 9.

We conclude this section with a summary of our

contributions.

1. We present a polynomial-time approximation algo-

rithm that solves the Cone-TSPN problem for input

view cones of varying orientation (or tilt).

2. We provide an implementation and a detailed analysis

of its performance.

3. We demonstrate that tilted cone views are useful in

different agriculture applications for which top-down

views (non-tilted cones) may not be sufficient.

2. Motivating field applications

Currently, most applications that perform visual coverage

of an area with a UAV are restricted to right angle (non-

tilted), uniform, top-down views. However, this can result

in significant loss of information. To demonstrate this we

consider two different scenarios. First, we consider the

problem of visual coverage of reflective surfaces. We

demonstrate that by choosing our angle views carefully we

can reduce sunlight specularities. Second, we consider the

problem of visual inspection of a target in difficult to see

areas. We show a scenario where tilted view angles can

successfully obtain visual information of a target object or

area even if it lies below another object blocking the top-

down views (e.g. bridges, trees).

2.1. Reflective surface coverage

We performed a set of experiments that verify our claim

that coverage of reflective areas requires tilted view cones

to avoid direct sunlight reflection. We covered a 30× 30

m2 area over a lake at an altitude of 10 m with three differ-

ent view angles. We will refer to the view angle with the

least amount of sunlight reflection in the camera as the best

view angle. Similarly, the worst view angle is that with the

greatest amount of sunlight reflection. Using the 08, non-

tilted views as baseline (top-down views), we compared the

amount of sunlight in the images using pixel intensities for

over 1,000 images (see Figure 4).

At the time of the experiments, the Sun polar angle was

358 and the Sun azimuthal angle was 2508 (from the mag-

netic north). By using the law of reflection, we calculated

the Sun angles and identified that the best view angle was

the one with a polar angle of 558 and azimuthal angle of

708. The worst view angle had a polar angle of 558 and azi-

muthal angle of 2508. By covering the area with the best

view angles, the average amount of sunlight specularities

in the images was reduced by 81:57%. However, coverage

with the worst view angles increased the average amount of

sunlight specularities in the images by 671:75%. These

results validate our claim that we can reduce sunlight spec-

ularities when covering reflective surfaces by choosing our

coverage views carefully.

2.2. Visual inspection of a target

We performed a set of experiments to verify our claim that

tilted view cones can provide more visual information of a

target object if its occluded by other objects and visibility is

limited. During this set of experiments we chose a red ball

as our target object under a tree cluster that blocks visibility.

The tree cluster could fit on a cylinder of about 20 m in dia-

meter and 25 m in height. We generated two coverage plans.

The first was top-down view coverage. The second was

tilted view coverage. The center of the cluster on the ground

Fig. 4. Reducing sunlight specularities in images using tilted

view cones. We covered a lake area with a UAV taking images

(left column) and used pixel intensities to quantify the amount of

sunlight on the images (right column). The top-down views were

used as a baseline (top row). The worst view angles had

671.75% more sunlight than the top-down views (middle row).

The best view angles had 81.57% less sunlight than the top-

down views (bottom row).
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was chosen as the reference point for both coverage plans.

In order to quantify how much visual information we obtain,

we placed a red ball of 1 m diameter at the center of the

cluster and counted the number of views that detected it.

Top-down views were acquired with a square double

grid coverage pattern. The altitude chosen was 25 m to

avoid hitting the tree (see Figure 5). Our camera had a 908

FOV and at an altitude of 25 m the square grids edge was

about 50 m. Pixel resolution was 3, 000× 3, 000 and, thus,

we cover 1 m2 with 602 pixels (the ball area). We chose an

overlap of 80% and for each 50 m line we took 10 images

every for a total of 120 images. For every image acquired

we performed simple color segmentation to detect the red

ball and counted the number of pixels. If we counted more

than 1,500 pixels (equivalent to seeing over 41% of the

ball) in a single image, we successfully detected the red

ball. Out of all the images acquired with the top-down view

coverage plan the red ball was present in only 1 (see

Figure 6). It is worth noting that in both views the ball was

not fully visible.

Tilted views were acquired uniformly on a circle around

the tree with a tilt of 608. For a camera tilt of 608 and a dis-

tance of 25 m (with respect to the red ball) altitude was

chosen to be 12.5 m. Similarly, the radius of the circle pat-

tern was 12.5 m. We chose an 87:5% overlap (with respect

to the bounding circle) and acquired 32 views uniformly.

Using the same procedure as before, we detected the red

ball in five images acquired from the tilted view coverage

plan (see Figure 6). The ball was almost fully visible in two

of the images. These results validate our claim that we can

obtain more visual information in certain scenarios when

using tilted side views.

3. Problem statement

Our problem, Tilted Cone-TSPN, can be formulated in the

following way. We are given C = (C1, . . . ,Cn),
~A = (~a1, . . . ,~an), X = (X1, . . . ,Xn), H = (h1, . . . , hn)
where C is a set of cones C1, . . . ,Cn with fixed apex angle

a. Cone Ci has apex point Xi on the ground plane G with

normal ~n and orientation vector ~ai of length hi such that

~n\~ai = ei. The goal is to compute a minimum length tra-

jectory T which intersects all cones in C (see Figure 7).

We present a strategy called Orientation-Visit

(Algorithm 5), which has an approximation factor

O
1 + tana

1� tan e tana
1 + log

max (H)

min (H)

� �� �
ð1Þ

with jej+ jaj\ p
2

, which means that the cones (and by

extension the UAV) do not touch the ground.

The tangent terms in Equation (1) behave well in practi-

cal situations. A camera has usually around p
2

FOV, which

translates to a ł p
4

and tana ł 1. If we set e = a� p
30

,

which means that the view cones will almost touch the

ground, we have tan e ł 0:9 and, thus, 1 + tana
1�tan e tana

ł 20.

Note that if we have non-uniform orientations

e = argmax
ai

~n\~ai.

4. Disjoint cones of similar height and

identical orientation

In this section, we present the strategy for the case where

the cones are disjoint, have similar heights, and identical

orientation. We first present a method to obtain upper and

lower bounds of the swept area of a tour using conic

volumes. These bounds help us remove dependence on the

number of cones when computing the performance of our

strategy. The strategy is outlined in Algorithm 1. Tilted
Slice-Visit solves Tilted Cone-TSPN for disjoint

cones of similar height and identical orientation angle e by

fixing a coverage plane Pht
at height ht and visiting the

cone bisectors on that plane with a TSP tour. Finally, if the

optimal tour T � achieves maximum height h�, we assume

that there exists an estimate height ĥ in the direction of the

cone orientation vector â such that h�ł ĥ ł 2h� (its exis-

tence is proven in Plonski and Isler (2019)).

Lemma 1. Let the optimal tour T � have length L� and

maximum height h�. Let its projection onto plane G with

normal ~n be T �G. For maximum cone height hmax and an

estimate height ĥ such that ĥ ø hmax, ĥ ł 2h�, the

Minkowski sum sweep volume f (T �G, ĥ) of a cone C with

apex and orientation angles a and e such that

jej+ a 2 (0, p
2
) traveling along T is upper bounded by

f (T �G, ĥ)ł L�ĥ2 tana 1 + 5p
6
tana

� �
.

Proof. The volume swept by a cone C with apex angle a,

orientation angle e, and height h along a path of length

L�G 2 G can be split into three parts (see Figure 8). First,

Fig. 5. GPS trajectories of the two coverage plans. Top-down

coverage was performed with a double grid (blue) with 50 m

edges and at 25 m altitude. Tilted coverage was performed with a

circular pattern at radius 12.5 m, altitude of 12.5 m, and camera

tilt of 608.
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we have vol(C) as two halves of the volume of a cone cov-

ering the points at the starting and ending locations of L�G
not covered by any other cone along L�. Second, we have

PLC , the area of a semicircle along the path L�G. Here PLC

is the area swept by the upper half base of the cone in the

direction of the normal of G. If L�G is a straight line, its

volume looks like that of a slanted half cylinder. Third, we

have PLT , the area of a triangle along L�G. Here PLT is the

area swept by the largest inscribing triangle on cone C.

Finally, we note that ĥ ø hn =~a �~n. h

Lemma 2. Let the optimal tour T � have length L� and

maximum height h�. Let its projection onto plane G with

normal ~n be T �G. For maximum cone height hmax and an

estimate height ĥ such that ĥ ø hmax, ĥ ł 2h�, there exists

a constant Cv such that the Minkowski sum sweep volume

f (T �G, ĥ) of a cone C with apex and orientation angles a

and e = 0 such that jej+ a 2 (0, p
2
) traveling along T is

lower bounded by f (T �G, ĥ)ø Cv tan
2 a
P

hi2H h3
i .

Proof. The volume of a cone swept out by a tour visit can

be represented as the intersection between two cones Ci0 ,

Cj0 of equal height hi and apex angle a, with their apex

points at distance hi tana. The volume of this intersection

is proportional to the volume of Ci0 , say by a constant num-

ber Cv. For a single cone visit we have
pr2

i
hi

3
=

ph3
i
tan2 a

3
and

the tour visits all cones with heights hi 2 H (see

Figure 9). h

Now that we have obtained the bounds for the swept

area of a tour, we study how they change as the cones tilt.

The following two lemmas show how the cone orientation

angle e affects the lower bound. The upper bound remains

the same.

Fig. 6. Number of red ball pixels detected for top-down coverage views (left) and tilted coverage views (right).

Fig. 7. Given a set of inverted view cones C with apex angle a, heights H , tilts E, orientation vectors ~A, and apex points X located at

points of interest the goal is to find the shortest tour to visit them.

Fig. 8. The sweep volume of a cone C along a path of length L�G
can be split into three parts. The checkered pattern area of a

semicircle swept by the upper half base of the cone. The triangle

area PLT is swept by the largest inscribing triangle on cone C.

The gray area Vol(C) includes the points covered by two half

cones located at the start and end of L�G.
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Lemma 3. Let cones Ci, Cj have apex and orientation

angles a and e, height hi, cap radius r = hi tana, and apex

points Xi,Xj 2 plane G with normal ~n. Let Ge be a 2D

plane with normal ~ne passing through Xi such that

~n\~ne = e and ~ai\~ne = 0. The relative arrangement of two

cones tilted by angle e with ~aj intersecting the cap of ci is

identical to that of two non-tilted cones with their apex

points Xi,Xj 2 Ge and one of them elevated from Ge by

he = r tan e.

Proof. In Figure 10, DXiEXj is a right triangle with Ê = p
2
:

tan e =
jEXjj
jXiEj =

jEXjj
r
( jEXjj= r tan e. h

Lemma 4. Let the optimal tour T � have length L� and

maximum height h�. Let its projection on plane G with

normal ~n be T �G. For maximum cone height hmax and an

estimate height ĥ such that ĥ ø hmax, ĥ ł 2h�, there exists

a constant Ce such that the Minkowski sum sweep volume

f (T �G, ĥ) of a cone C with apex and orientation angles a

and e such that jej+ a 2 (0, p
2
) traveling along T is lower

bounded by f (T �G, ĥ)ø Ce tan
2 a
P

hi2H h3
i , where

Ce = Cv(1� tana � tan e)3.

Proof. Given two tilted by e cones Ci, Cj, by Lemma 3 this

is equivalent to two non-tilted cones where Cj is elevated by

he = r tan e. Create a new cone Cj0 with apex point Xj, apex

angle a, height hi � he = h(1� tana tan e), and radius

re = h tana(1� tana tan e) (see Figure 9). Create a new

cone Ci0 with apex point Xi0 lying at the intersection between

he and jXiDj, with radius re, apex angle a and height

hi � he. The volume of intersection between Ci, Cj is larger

than the volume of intersection between Ci0 , Cj0 . Applying

Lemma 2 on Ci0 , Cj0 and noting that Ce = Cv(1�
tana tan e)3 produces the desired lower bound. h

Now that we have obtained the bounds for the swept area

of a tour relative to the orientation angle, we can compute

the performance of our strategy in Algorithm 1.

Lemma 5. Let an input set C of n disjoint cones have

orientation and apex angles e and a, heights H , and cov-

erage height ht. If Tilted Cone-TSPN tour T is computed

with algorithm Tilted Slice-Visit using an (1 + b) approxi-

mation, then L
1 + b

ł 2ht +
L�+ 2n tana

cos e
mean(H).

Proof. Let the optimal tour T � with length L� visit cone C

at point T �i , lying at cone height hi. Here T �i cannot be fur-

ther than r = hi tana from the orientation vector ~a (see

Figure 10). Our strategy T with length L visits the cone at

point Ti, which is a point on the orientation vector ~a.

Define plane P such that its normal is parallel to ~a and it

passes through Xi. Project T �i along ~a onto P and call the

resulting point T�i,P. On P jT�i,PTijł hi tana, then

LP � L�P ł
X
8ci2C

hi tana ð2Þ

The projection of a tour with length L� onto P cannot

make it longer than

L�P ł L� ð3Þ

Furthermore, the projection of tour on P with length LP

onto Pht
such that P\Pht

= e cannot get longer than a fac-

tor of cos e:

L ł
LP

cos e
ð4Þ

Combining Equations (2), (3), and (4), we obtain

Fig. 9. The volume of intersection between two cones Ci0 , Cj0 of

equal height is proportional to the volume of Ci0 by a constant

number Cv.

Fig. 10. Tilted Slice-Visit. TSP will visit the cone at Ti, with

jXiTij= ht. Here Ti is not further away than hi tana from T�i
projected along~a onto Pht

.

Algorithm 1. Tilted Slice-Visit

Input: x0, C, H, Â, X, e, a
Output: Tilted Cone-TSPN tour T

1: Define a plane Pht
that is parallel to G and elevated by

coverage height ht = hmin in the direction of~a
2: Intersect all orientation vectors with Pĥ, the result is a

number of points on Pht

3: Approximate TSP tour Tht
that visits all points on Pht

with
starting point x0 (using, e.g., a PTAS for Euclidean points)

4: Connect Pht
with G using a vertical double line segment at x0

394 The International Journal of Robotics Research 39(4)



L ł
L�+

P
8ci2C hi tana

cos e
ð5Þ

Connecting x0 2 G to Pht
requires two additional line

segments of length at most 2ht. Finally, note thatP
hi2H hi = nmean(H). h

Theorem 6. Let an input set C of n disjoint cones have

orientation and apex angles e and a and heights H . For

an estimate height ĥ ø hmax, h�ł ĥ ł 2h� and

jej+ a 2 (0, p
2
), if the strategy Tilted Slice-Visit solves

Tilted Cone-TSPN using a (1 + b) approximation, then it

has an approximation factor

1 + bð Þ 1

cos e

ĥ

mean(H)

 !2

1 +
5p

6
tana

� �0
@

1
A

Proof. From Lemmas 1 and 4 and noting thatP
hi2H h3

i ø n �mean(H)3, we have

n tana ł
L�ĥ

2
(1 + 5p

6
tana)

Cemean(H)3
ð6Þ

Substituting with Lemma 5, we obtain

L

1 + b
ł 2ht +

L�

cos e
+ 2

mean(H)

cos e

L�ĥ
2

1 + 5p
6
tana

� �
Cemean(H)3

ð7Þ

Noting that ht ł ĥ, ht ł 2h�ł L� gives the resulting

bounds.

5. Disjoint cones of identical orientation

In this section, we present the strategy for the case where

the cones are disjoint, have different heights, and identical

orientation. If the cones have different heights, then

Algorithm 1 may perform poorly owing to being restricted

to a coverage height of hmin. This is addressed by splitting

the cones into a number of height bins such that the require-

ments of Lemma 1 are met and perform Tilted Slice-Visit

on each. The strategy is outlined in Algorithm 2.

Theorem 7. Let an input set C of n disjoint cones have

orientation and apex angles e and a and heights H . For

an estimate height ĥ ø hmax, h�ł ĥ ł 2h� and

jej+ a 2 (0, p
2
), if the strategy Tilted Height-Visit solves

Tilted Cone-TSPN using a (1 + b) approximation, then it

has an approximation factor

1 + bð Þ 1

cos e
1 +

5p tana

6

� �
1 + log2

ĥ

hmin

$ % !

Proof. Given coverage height ht, and the approximation

factor from Theorem 6, we have 1 + log2
ĥ

hmin

j k
height bins

and we compute a subtour for each bin. Finally, note that

ĥ ł 2ht and mean(H)ł 3
2

ht. h

6. Non-disjoint cones of identical orientation

In this section, we present the strategy for the case where

the cones are not disjoint, have different heights, and iden-

tical orientation. As we already have a method for the dis-

joint case, we can handle intersections of cones with

identical orientation simply by selecting their maximal

independent set (MIS) (Dumitrescu and Mitchell, 2001;

Elbassioni et al., 2006). The cones in the MIS intersect all

cones 2 C. The strategy is outlined in Algorithm 3, which

is an extension of Algorithm 2 for the case where the cones

are not disjoint. Tilted Height-Select constructs

the MIS by selecting cones greedily based on height. Then

it computes a tour to visit the cones in the MIS and adds

the necessary detours to ensure all cones are visited.

Lemma 8. Given an input set C with orientation and apex

angles e and a let the MIS be a subset of C such that the

cones 2 MIS do not intersect one another and collectively

intersect all cones 2 C. If the MIS is selected using Tilted

Height-Select, then Algorithm 6 adds k = 2
1�tana tan e

� 	
detours of length ł (8kp + 4)ht tana that visit every cone.

Proof. At the coverage height ht, the maximum distance

between the orientation vectors ~ai, ~aj of a cone ci 2 MIS

and a cone intersecting it cj 62 MIS is 4ht tana, because

Algorithm 2. Tilted Height-Visit

Input: x0, C, H , e, a
Output: tiltedCone-TSPN tour T

1: i = 0
2: repeat
3: Create bin with height range Bi = ½2ihmin, 2

i + 1hmin)
4: For all cones with height 2 Bi call Algorithm 1 and find

tour TBi
with starting point x0

5: i = i + 1
6: until 2ihmin.hmax

7: Connect all tours TBi
with a vertical line segment at x0

Algorithm 3. Tilted Height-Select

Input: C, H , e, a
Output: Tilted Cone-TSPN tour T

1: Sort cones into a set Csort from shortest to tallest based on
cone height h
2: MIS = ;
3: repeat
4: Select the first cone C1 2 Csort, this is the shortest cone in

the set
5: MIS = MIS [ C1

6: Remove from Csort cone C1 and all cones intersecting with it
7: until Csort = ;
8: Call Algorithm 4 with input MIS
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2ht ł hi. If the cones are tilted by e, then from Lemma 3

the relative arrangement of two such cones is identical to

that of two non-tilted cones with one of them 62 MIS, say

cj
0, elevated from the plane by he = hi tana tan e. The

maximum distance between the orientation vectors~ai,~aj0 is

4ht tana. At height ht, cone cj0 has diameter

dje = 2(ht � he) tana, thus we can guarantee coverage

from~ai by adding circumference paths at a right angle, ori-

ginating at Ti and having radii that are increments of dje.

The total length is less than k8pht tana + 4ht tana, where

k is a constant integer such that

k = 4ht tana
2(ht�he) tana

l m
= 2

1�tana tan e

� 	
(see Figure 11). h

Now that we have computed the cost of the additional

detours we can calculate the performance of Algorithm 3.

Theorem 9. Let an input set C of n disjoint cones have

orientation and apex angles e and a and heights H . For an

estimate height ĥ ø hmax, h�ł ĥ ł 2h� and

jej+ a 2 (0, p
2
), if the strategy Tilted Height-Select solves

Tilted Cone-TSPN using a (1 + b) approximation, then it

has an approximation factor

1 + bð Þ 18k

cos e
1 +

5p tana

6

� �
1 + log2

ĥ

hmin

$ % !

where k = 2
1�tana tan e

� 	
.

Proof. Similar to Theorem 6 we can add the new detours

to the length of the detour in Lemma 5:

L
1 + b

ł 2ht +
L�

cos e
+ 2 mean(H)+ htk(8p + 4)

cos e

L�ĥ
2

1 + 5p
6
tanað Þ

Cemean(H)3

Similar to Theorem 7, we have 1 + log2
ĥ

hmin

j k
such

tours. h

7. Non-disjoint cones of varying orientation

In this section, we present the strategy for the case where

the cones are disjoint, have different heights, and different

orientation. In order to handle the case where the cones

have different orientation angles, we split them into differ-

ent orientation sets. We create a number of orientation sets

such that all cones have orientation angle difference u such

that ei\ej = u ł a
2
, 8i, j, u + a 2 (0, p

2
). For each such set,

we show that we only need to add one additional circum-

ference detour to our previous strategy. The strategy is out-

lined in Algorithm 5. Note that we now have different

orientation angles so e = argmax
ai

~n\~ai.

Lemma 10. Let two intersecting cones Ci 2 MIS,

Cj 62 MIS have apex angle a, heights hi, hj and orientation

angles ei and ej, with u = ei\ej ł a
2
. If coverage height

ht ø hi
sin u

sin (2a + u) + r tan e, we only need to add one addi-

tional circumference detour to the strategy outlined in

Algorithm 3 centered at the center of the cone at height ht,

at a right angle with respect to ~ai and at distance

4ht tana + 2(ht � r tan e)tana to guarantee coverage of

all cones intersecting those 2 MIS (see Algorithm 5 and

Figure 12).

Proof. First we note that if the cones are tilted by e, then

from Lemma 3 the relative arrangement of two such cones

is identical to that of two non-tilted cones with one of them

62 MIS, say cj
0, elevated from the plane by he. Thus, with-

out loss of generality we can assume that on the relative

arrangement between cones Ci and Cj, ei =
p
2
. In Figure

12, applying law of sines on DIXkXj gives

jXkXjj= jIXk j sin u
cos (a + u) = ri

sina
sin u

cos (a + u). Applying the law of

sines on DXkMXj, gives jXkM j= ri

sin (2a + u)
sin u
sina

. Triangle

DXkHM is a right-angled triangle, thus

jHXk j= hi sin u
sin (2a + u), where ri = hi tana. Now, if Xk and Xj

are elevated by he, then we have jHXk j= hi
sin u

sin (2a + u) + he.

Algorithm 4. Tilted Height-Visit Intersect

Input: C, H , x0, e, a, ~A
Output: Tilted Cone-TSPN tour T

1: Truncate all cones to not be taller than ĥ = hmax

2: i = 0
3: repeat
4: Create bin with height range Bi = ½2ihmin, 2i + 1hmin)
5: For all cones with height 2 Bi call Algorithm 1 and find

tour TBi
with starting point x0.

6: for each cone ci visited in TBi
do

7: Add k = 2
1�tana tan e

� 	
circumference detours

perpendicular to ~a such that detour j 2 ½1, k� is centered
at Ti and has radius j2(ht � he) tana

8: end for
9: i = i + 1

10: until 2ihmin.hmax

11: Connect all tours TBi
with a vertical line segment at x0

Fig. 11. The furthest cone Cj can be from Ci while still

intersecting it results in have a single intersection point lying

along the straight line s originating from its apex Xj.
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Thus, if coverage height ht ø hi sin u
sin (2a + u) + he, then these

detours guarantee coverage of all cones intersecting Ci.

Lemma 10 implies that if two cones Cj, Ck with maxi-

mum orientation difference a
2

both intersect a third cone Ci,

then they also intersect one another after a certain height ht

(see Figure 12).

Lemma 11. The additional detour from Algorithm 5

(Lemma 10) visits all cones not visited from Algorithm 3.

Proof. In Figure 12, let cone ck have the same height hi

and intersect cone ci 2 MIS at its right-most cap point.

The added detour from Lemma 10 visits ck at its left-most

and right-most cap points at coverage height ht. Let cone

cj be tilted at an angle u with respect to ci and intersect ci

at its right-most cap point. Let W be the point of intersec-

tion between the two right-most rays of ck and cj. Triangle

DXkWXj has Ŵ = u and X̂k = p
2
� a. From the law of sines

we have jXjW j= jXkXjj cosa
sin u

. From the proof of Lemma 10

we know jXkXjj= ri

sina
sin u

cos (a + u). Combining the two we

have jXjW j= hi

cos (a + u). As p
2

.u.0, then jXjW j. hi

cos (a)

which is the length of the right-most ray of cone ck . Also

note that point M 2 ci 2 cj and point W 62 ci 2 cj for u.0.

As points M ,W belong to the same line jMW j 2 cj, it fol-

lows that the right-most ray of cone ck above height

hi sin u
sin (2a + u) + he is fully contained in cone cj. Thus, the

outermost detour always visits a tilted cone at distance

greater than 4ht tana from the apex of ci. We know from

Lemma 8 that the innermost detours visit every other cone

at distance ½0, 4ht tana�, which includes any cone tilted at

an angle u closer to the apex of ci than cj.

In order to compute the performance of Algorithm 5 we

need to revisit the lower bound from lemma 4. The follow-

ing lemma shows how the different cone orientation angles

affect the lower bound.

Lemma 12. Let two cones Ci, Cj have the same height hi,

apex angle a, and orientation angle difference

ei\ej = u ł a
2
. A constant Cu exists (similar to Lemma 4)

such that the Minkowski sum sweep volume f (T�G, ĥ) is

lower bounded by f (g(T �), h)ø Cu tan
2 a
P

hi2H h3
i where

Cu = Ce
tan2a

2

(1�tana tan u)5
.

Proof. In Figure 13, let line B0A0 originate from point B0

and be parallel to BA. Let the area of DA0B0D be A3,

the area of DABD be A1 and the area of DEB0D be A2.

The area of triangles DABD and DA0B0D are related

by A3

A1
= jBDj
jB0Dj

2
=

tan2a
2

(1�tana tan u)2
. As A3 ł A2 it follows

A2

A1
ø

tan2a
2

(1�tana tan u)2
. Finally, note that the ratios of the vol-

ume between two cones C1, C2 and the areas of their maxi-

mum inscribed triangles T1, T2 is related by
vol(C1)
vol(C2)

= 1
(1�tana tan u)3

area(T1)
area(T2)

. Thus, the volume of intersec-

tion of cones Ci0 , Cj0 compared with the volume of inter-

section of cones Ci, Cj from Lemma 4 is not smaller than
tan2a

2

(1�tana tan u)5
. h

Theorem 13. Let h� be the maximum height the optimal

strategy achieves. For any set of input cones C with a

given a coverage height ĥ such that ĥ ø hmax, h�ł ĥ ł 2h�

and orientation and apex angles e and a such that e\ej

= u ł a
2
, 8j, u + a 2 (0, p

2
), if the strategy Orientation-

Visit solves Tilted Cone-TSPN using a (1 + b) approxima-

tion, then it has an approximation factor 1 + bð Þ
18k
cos e

1+ 5p tana
6

� �
1 + log2

ĥ
hmin

j k� �
, where k = 2

1�tana tan e

� 	
.

Proof. The proof is similar to Theorem 9. The added

detours from Lemma 10 result in k + 1 circumference

paths each with length less than 8pht tana. These paths

can be connected with a double line segment of size less

than 4ht tana. h

These bounds apply to cones having orientation angle

difference u ł a
2
. In case we have a wider range of cones

Fig. 12. If two cones Cj, Ck both intersect a third cone Ci, then

they also intersect one another after a certain height ht.

Fig. 13. Computing the volume of intersection between two

cones Ci0 , Cj0 with apex angle a, orientation angle difference

u = ei\ej ł a
2
, height h, and radius r. The volume of intersection

between Ci0 , Cj0 exists (gray area) and is always smaller than the

volume from Lemma 4 by a constant factor.
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with a larger orientation angle difference, we simply bin

them into sets and perform the same strategy for each such

set. Noting that ĥ ł max(H) and e\ p
2
� a

2
, we can simplify

the approximation and obtain the result in Equation (1).

Lemma 14. Given a set of orientation vectors ~A, we need

at most 8 p
a

� �2
l m

bins to separate them into sets of maxi-

mum angle difference of a.

Proof. We will create a number of bins on the surface of a

unit sphere such that for any pair of unit vectors ~a, ~b on

the same bin the condition~a\~b ł a is satisfied. If~a and~b
belong on a unit circle, they can be at most a away from

each other and we need at least 2p
a

bins to cover all points

of the circle. If ~a and ~b belong on a unit sphere, then we

can divide it into a number of strips of width a, each cen-

tered around a circle that is equal to or smaller than the

unit circle. As each strip is a away from each other, we

can split the surface of the sphere into 2p
a

strips. We can

cover each strip in its entirety with 2 2p
a

bins and the

entirety of the sphere with 8 p2

a2 bins. h

8. Simulations

In Sections 4–7, we presented our strategy for the Tilted

Cone-TSPN and its analysis for the worse-case perfor-

mance. In this section, we present an implementation of

our strategy and show through simulations that it can com-

pute practical tours.

8.1. Implementation

We implemented our strategy along with heuristics that

improve performance while keeping the theoretical guaran-

tees. Instead of performing the entirety of all ellipsoidal

detours on every cone in the MIS, we select a subset of

them and only perform the part of the detour that visits

another cone. In addition, we plan a tour with multiple

orientation directions (azimuth angles). As performance

depends on the relative cone arrangement, we consider

multiple coverage heights and select the best. After identi-

fying a set of points ptour that cover all cones, we use the

Concorde TSP solver (Applegate et al., 2006) in order to

compute an optimized tour (see Figure 14 for an example

tour).

Our implementation is described in Algorithm 6. For

each height guess ht we define a horizontal plane Pht
and

compute the Tilted Cone-TSPN tour based on the ellipses

resulting from the intersection of the cones with Pht
. For

each cone ci 2 MIS we compute two ellipses el1 and el2

which correspond to the detours at radius 2ht tana and

2(k + 1)(ht � he) tana on Pht
(lines 4, 11). Then we iden-

tify the intersections between el1, el2 and the ellipses of

cones cj 62 MIS (lines 7–14). We obtain at most two points

for each cone cj intersecting either el1 or el2 prioritizing

the shorter detour el1. We keep the intersection point that

has the closest neighbor among the currently selected set of

points to be visited ptour (lines 21–23). If a cone ellipse

does not share any intersection points, then it is either on

the MIS and does not intersect any cone or is not on the

MIS. If it is not on the MIS, then it lies inside one of the

ellipsoidal detours. In both cases, we choose to visit the

cone at the point on its ellipse that is closest to another

point 2 ptour (lines 17–19). The optimal tour Tht
visiting all

points 2 ptour is then computed using the Linkern module

from the Concorde TSP solver (line 27). Finally, we select

the best coverage height according to tour length (line 30).

8.2. Evaluation

We performed simulations for two representative applica-

tions (see also Section 2).

� The first application is coverage of reflective surfaces

(see Figure 16). In this application, we select a number

of view cones that cover a given square area and select

a tilt angle e that avoids direct sunlight (see also

Algorithm 5. Orientation-Visit

Input: C, x0, H , ~A, e, a
Output: Tilted Cone-TSPN tour T

1: for each orientation vector~ak 2 ~A do
2: Create cone orientation set Ok with representative

orientation~ak

3: Put all cones with orientation ~a 2 ~A such that (~a\~ak)ł a
2

into set Ok

4: Call Algorithm 3 with input Ok and perform k + 1 detours
5: end for

Fig. 14. An example of a computed tour, colored blue. For a set

of randomly generated cones with apex angle p=5, tilt angle p=4

at coverage height 10 m. The ellipsoids represent the cones

2 MIS. The computed tour (blue) is 26.94% better than the apex

tour (green).
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Section 2.1). All cones have uniform tilt angle e and

orientation vector ~a direction (azimuth angle). The

results can be seen in Table 1.
� The second application is visual inspection of a target

area (see Figure 17). In this application, we select a

number of side view cones that inspect a target area

from all angles (see also Section 2.2). All cones share

uniform tilt angle e. However, the orientation vector ~a

direction (azimuth angle) varies (non-uniform). The

results can be seen in Table 2.

For both scenarios, we generated sets of 200 view cones

with an apex angle of p
5
. The apex points were positioned

uniformly with U (0, 100) over a 100× 100 m2 area. In

total, 12 sets were generated with varying coverage heights

2 f10, 20, 40, 80g and cone tilt angles 2 fp
4
, p

5
, p

10
g. The

azimuth angles for the first and second application were

chosen 2 f0g, f0, p
2
, �p

2
,pg, respectively. To evaluate the

efficiency of our implementation we compare it with the

TSP tour TG that covers all the apex points on the ground.

This tour, the cone apex tour, does not use any information

about the cones and can be used as an upper bound on the

length of any TSPN tour on our view cone problem.

The performance evaluation was based on the average

tour length ratio between our implementation and the cone

apex tour over 100 simulations. Tables 1 and 2 present how

much shorter our tour is when compared with the cone apex

tour for different coverage heights (columns) and cone tilt

angles (rows). As the coverage height ht increases the tour

tends to get shorter owing to the increase in the ellipse area

(first column for each tilt angle). However, the cost of reach-

ing this height + 2ht can make the total tour long and, thus,

Fig. 15. The performance of Orientation-Visit-Practical depends on the cone arrangement. For 200 cones over a 100× 100 m2 area

with an apex angle of p
5
, cone tilting angle p

5
, and azimuth angles f0,p=2,p, � p=2g, at a height of 80 m the computed tour on the

left is 18.71% better than the apex tour (worse than any other coverage height). For a different cone arrangement the computed tour

on the right is 63.05% better than the apex tour (best among all coverage heights).

Table 1. Average performance improvement of our strategy over the cone apex tour for sets of varying coverage heights

ht = f10, 20, 40, 80g and cone tilting angles fp=4,p=5,p=10g. The second column of each tilt angle adds the cost of reaching

coverage height ht for the same tour as the first column. Cones have the same orientation vector direction (azimuth angle).

Tilting angles & height cost

p=4 rad p=5 rad p=10 rad

+ 0ht + 2ht + 0ht + 2ht + 0ht + 2ht

10 m 27.60% 25.74% 25.99% 24.12% 24.70% 22.84%
20 m 42.01% 39.28% 43.58% 39.84% 41.53% 37.81%
40 m 61.80% 54.38% 61.72% 54.25% 59.60% 52.15%
80 m 63.05% 48.18% 65.90% 50.96% 68.90% 54.01%

Fig. 16. Illustration of reflective surface coverage application.

Given the sunlight direction we can calculate the camera

orientation with the least amount of sunlight in the images. This

results in view cones with uniform orientation.
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we need to consider multiple coverage heights and choose

the best (second column for each tilt angle). The perfor-

mance of each individual tour depends on the relative cone

arrangement. The maximum performance difference was

44.34% (see Figure 15). These results show that our algo-

rithm can be used in a practical way and provide shorter

tours by exploiting the structure of the cones.

9. Conclusion and future work

In this work, we have studied the optimization problem

Tilted Cone-TSPN, which is an extension of Cone-TSPN.

We have demonstrated through field experiments that tilted

view cones are necessary in real-world applications. Our

main contribution is a polynomial-time approximation

algorithm that solves Tilted Cone-TSPN and guarantees a

solution that only depends on the cone apex angle a, tilt

angle e, and the ratio between the shortest and tallest cone.

In addition to presenting the mathematical bounds, we

implemented our strategy with heuristics that improve per-

formance without sacrificing the theoretical guarantees.

Simulations over large numbers of cones indicated that our

strategy produced a tour that was shorter than the tour on

the cone apex points that did not exploit the cone structure.

There are multiple venues for future work. One of the

main assumptions of this work is that the conic regions are

given ahead of time. What if the cone heights are known,

but the apex positions can change (e.g., coverage of a mov-

ing target)? Furthermore, the current strategy does not con-

sider prioritization of the conic regions. What if some

regions are preferred over others? It may be advantageous

to first perform a quick, high-altitude coverage and then a

more detailed, lower-altitude coverage of points of interest.

Similarly, if changing the tilt angle of the camera is slow,

then different angles may be preferred over others. We

would also like to explore the extreme case where the cones

touch the ground. A different method and analysis might be

required for this case, and a ground robot collaborating

with a UAV might be a more appropriate option. In

Table 2. Average performance improvement of our strategy over the cone apex tour for sets of varying coverage heights

ht = f10, 20, 40, 80g and cone tilting angles fp=4,p=5,p=10g. The second column of each tilt angle adds the cost of reaching

coverage height ht for the same tour as the first column. Cones have varying orientation vector directions (azimuth angles)

2 f0,p=2,p, � p=2g.

Tilting angles & height cost

p=4 rad p=5 rad p=10 rad

+ 0ht + 2ht + 0ht + 2ht + 0ht + 2ht

10 m 21.79% 19.93% 21.86% 19.99% 22.89% 21.03%
20 m 31.12% 27.38% 32.39% 28.66% 37.08% 33.36%
40 m 33.05% 25.59% 41.34% 33.84% 55.91% 48.47%
80 m 41.56% 26.62% 50.44% 35.51% 62.24% 47.35%

Algorithm 6. Orientation-Visit-Practical

Input: C, x0, H , ~A, E, a, X
Output: Tilted Cone-TSPN tour T

1: Compute the TSP cone apex tour TG visiting the apex points
X

2: for each height guess ht described in Algorithm 2 do
3: Define horizontal plane Pht

for height ht as in Algorithm 1
4: Intersect all cones 2 C with Pht

and obtain the associated
ellipse set ELCht

5: Sort ellipses into a set ELCsort from shortest to tallest based
on cone height

6: MIS1 = MIS2 = ;
7: repeat
8: Select the first ellipse el1 2 ELCsort (shortest cone in

the set)
9: MIS1 = MIS1 [ el1

10: Remove from ELCsort ellipse el1 and all ellipses
intersecting with it

11: Create another ellipse el2 corresponding to the k + 1
detour on Pht

12: MIS2 = MIS2 [ el2
13: Remove from ELCsort ellipse el2 and all ellipses

intersecting with it
14: until ELCsort = ;
15: ptour = x0

16: for each ellipse eli 2 MIS1 [MIS2 do
17: if eli does not intersect any other ellipse then
18: Select the point pi 2 eli that is closest to another point

2 ptour

19: Add pi to ptour

20: else
21: for each ellipse elj 2 ELht

intersecting eli do
22: Select the intersection point pij that has the closest

neighbor 2 ptour

23: Add pij to ptour

24: end for
25: end if
26: end for
27: Compute the TSP tour Tht

visiting all points 2 ptour

28: Add to Tht
a vertical line segment of length 2ht connecting

Pht
with G at x0

29: end for
30: Select the best tour among all Tht

and TG
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addition, multiple UAVs may be able to cover different

height and orientation sets at the same time improving the

coverage speed. Finally, we would like to determine

whether a UAV can autonomously decide on the best cover-

age resolution for a given target and choose the best cover-

age height and orientation online.

Acknowledgements

A preliminary version of this article, was presented at the

International Conference on Robotics and Automation (ICRA

2018). This submission extends the conference version by pre-

senting the full details of the proofs, a revised implementation and

field experiments. We thank Dr. Forest Isbell for allowing us to

perform experiments at Cedar Creek Ecosystem Science Reserve.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was supported in part by the NSF (award numbers 1525045,

1617718 & 1849107) and a grant from Minnesota State LCCMR

Program.

ORCID iDs

Nikolaos Stefas https://orcid.org/0000-0002-4940-1716

Patrick A Plonski https://orcid.org/0000-0002-7978-4586

References

Applegate D, Bixby R, Chvatal V and Cook W (2006) Concorde

TSP solver. Available at: http://www.tsp.gatech.edu/concorde/.

Arora S (1998) Polynomial time approximation schemes for Eucli-

dean traveling salesman and other geometric problems. Journal

of the ACM 45(5): 753–782.

Bodlaender HL, Feremans C, Grigoriev A, Penninkx E, Sitters R

and Wolle T (2009) On the minimum corridor connection

problem and other generalized geometric problems. Computa-

tional Geometry 42(9): 939–951.

Chan THH and Elbassioni K (2011) A QPTAS for TSP with fat

weakly disjoint neighborhoods in doubling metrics. Discrete

& Computational Geometry 46(4): 704–723.

Cheng P, Keller J and Kumar V (2008) Time-optimal UAV trajec-

tory planning for 3D urban structure coverage. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems,

2008 (IROS 2008). IEEE, pp. 2750–2757.

Choset H (2001) Coverage for robotics—a survey of recent

results. Annals of Mathematics and Artificial Intelligence

31(1): 113–126.

de Berg M, Gudmundsson J, Katz MJ, Levcopoulos C, Overmars

MH and van der Stappen AF (2005) TSP with neighborhoods

of varying size. Journal of Algorithms 57(1): 22–36.

Dumitrescu A and Mitchell JS (2001) Approximation algorithms

for TSP with neighborhoods in the plane. In: Proceedings of

the 12th Annual ACM-SIAM Symposium on Discrete Algo-

rithms. Philadelphia, PA: Society for Industrial and Applied

Mathematics, pp. 38–46.
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