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ABSTRACT The use of unmanned aerial systems (UAS) for wildlife surveying and research has widely
expanded in the past decade, but with varying levels of success. Applying UAS paired with Forward
Looking Infrared (FLIR) technology to survey forest‐dwelling species has been particularly challenging
because of unreliable animal detection. We describe our application of UAS and FLIR technology to detect
GPS‐collared moose (Alces alces) and their calves in the heavily‐forested region of northeastern Minnesota,
USA, during 2018 and 2019. We conducted grid‐pattern UAS thermal surveys over GPS‐collared cows
during the calving seasons (April to June) of 2018 and 2019 to determine the feasibility of using a FLIR‐
equipped UAS for detecting cow moose, and for quantifying the number of calves. We also collected data
on environmental and flight characteristic variables to model moose detection. Our best fitting model of
moose detection showed increased detection with more cloud cover at the survey site (β = 1.13, SE= 0.43),
whereas increased forest canopy (β =−1.10, SE= 0.38), and vegetative greenness (enhanced vegetation
index, EVI; β =−1.37, SE= 0.32) both reduced detection success. By adjusting our methodology based on
our detection model findings, we increased our adult moose detection success from 25% during our first
season, to 85% during our second season, and calf detection from 27% to 79%, respectively. We report on
our methodological improvements and identify limitations to UAS‐based wildlife research in forested
systems. Overall, we found that UAS with FLIR sensing is a promising tool for quantifying moose calving
success, twinning rate, and calf survival, and may be effective for monitoring the reproductive success and
survival of other wildlife species in densely forested regions. © 2021 The Wildlife Society.

KEY WORDS aerial survey, Alces alces, calf survival, detection modeling, drones, FLIR, Minnesota, thermal infrared,
unmanned aerial systems (UAS), unmanned aerial vehicles (UAV).

The use of unmanned aerial systems (UAS) in wildlife sci-
ence has grown rapidly (Jiménez López and Mulero‐
Pázmány 2019) for their applications in animal surveying
and censuses (Vermeulen et al. 2013, Chrétien et al. 2015,
Ezat et al. 2018), detection of animal sign (e.g., nests and
tracks; Goebel et al. 2015, van Andel et al. 2015), and
habitat evaluation (Chen et al. 2017, Olsoy et al. 2018).
Studies deploying UAS have covered a range of taxonomic

groups including terrestrial and aquatic mammals (Hodgson
et al. 2013, Witczuk et al. 2018), birds (Chabot and
Bird 2012), reptiles (Ezat et al. 2018), and fish (Kiszka
et al. 2016). Unmanned aerial systems can collect data at
fine spatial and temporal resolutions because they can fly at
low altitudes and much slower flight speeds relative to
conventional manned aircraft (Anderson and Gaston 2013).
Operational efficiency of UAS is increased with the ability
to launch UAS rapidly on site with user discretion, whereas
conventional aircraft often are limited by low cloud cover,
require additional flight time to travel to and from refueling
sites, and have a considerably higher operating cost
(Chabot 2009, Watts et al. 2010, Vermeulen et al. 2013,
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Linchant et al. 2015). Safety is also increased with UAS
because they eliminate the need for manned‐flight in
often hazardous environments (Jones et al. 2006, Watts
et al. 2010); low‐level flight is a leading cause of job‐related
mortality for wildlife professionals (Sasse 2003).
Evidence suggests that the presence of UAS can disturb

wildlife by eliciting behavioral (Bennitt et al. 2019) and
physiological responses (Ditmer et al. 2015). However,
UAS reduces the need to approach animals on foot or with
ground vehicles for counting or conducting observations,
and may ultimately cause less disturbance than traditional
aerial counting methods with manned aircraft (Chabot and
Bird 2012, Goebel et al. 2015, Weissensteiner et al. 2015,
Hodgson et al. 2018) due to less noise from electric UAS
motors (Mulero‐Pázmány et al. 2017). Consequently, UAS
provide a powerful tool for monitoring of populations where
repeat visits are required to monitor parameters like nesting
success or survival rates (Sardá‐Palomera et al. 2012); this is
especially valuable when monitoring species that are sensi-
tive to anthropogenic disturbances (Ditmer et al. 2019).
Unmanned aerial systems can be equipped with a large

variety of sophisticated sensors, and the use of multiple
combinations of sensors are possible with adequate UAS
payload capacity. The proliferation of UAS and sensors in a
variety of scientific fields and industries has led to reduced
sensor and UAS costs and improvements in the spatial
resolution of sensors. Color (RGB) cameras are commonly
included on UAS and yield high‐resolution imagery of
ground features and even wildlife (Chabot and Bird 2012;
Hodgson et al. 2013, 2018). Forward Looking Infrared
(FLIR) sensors are increasingly being deployed in UAS
systems to successfully detect and survey homeothermic
wildlife species (Witczuk et al. 2018, Ireland et al. 2019). By
capturing thermal radiation emitted from animals, FLIR
sensors allow for increased detection probability of species
that are well camouflaged, partially obscured by vegetation,
or at greater distances than could be detected with con-
ventional methods (Dunn et al. 2002, Haroldson
et al. 2003, Montague et al. 2017). These advantages reduce
perception bias (i.e., failing to detect an animal that
was present and available for detection; Marsh and
Sinclair 1989) and have provided significant increases in the
efficacy of some wildlife surveys (Focardi et al. 2001).
Thermal sensing works best when there is high contrast
between an animal’s temperature and the background en-
vironment (i.e., a warm‐bodied animal against cool ground;
Garner et al. 1995, Chrétien et al. 2016). Rocks, bare
ground, logs, and living trees absorb and emit large amounts
of thermal radiation, which results in bright returns that can
create false‐positive detections (Garner et al. 1995, Dunn
et al. 2002). Importantly, environments with thick vegeta-
tion or dense forest canopy can obscure wildlife from de-
tection thus limiting the effectiveness of UAS‐FLIR pairing
(Gill et al. 1997, Dunn et al. 2002, Kissell and
Nimmo 2011). Thermal sensors have been useful for de-
tecting moose (Alces alces) and other ungulates from manned
aircraft (Addison 1972, Adams et al. 1997, Bontaites
et al. 2000,

Bernatas and Nelson 2004, Millette et al. 2014); similar
levels of success have been achieved when affixing FLIR
sensors to UAS (Chrétien et al. 2016, Witczuk et al. 2018,
Ireland et al. 2019, Beaver et al. 2020), even with smaller
bodied target species, such as recently born roe deer
(Capreolus capreolus) fawns in grass meadows (Israel 2011).
Most studies to date have paired UAS with FLIR tech-

nology for wildlife detection in open terrain without a high
percentage of forest cover (Israel 2011, Lhoest et al. 2015,
Ireland et al. 2019). Indeed, both manned aircraft and UAS
surveys using FLIR sensing in forested environments have
faced greater challenges due to unreliable animal detection
(Potvin and Breton 2005; Chrétien et al. 2015, 2016;
Witczuk et al. 2018). Surprisingly, this was true even for
large‐bodied animals; Dunn et al. (2002) found that aerial
FLIR sensing did not aid in detection of elk (Cervus elaphus)
because: 1) elk were well‐insulated and did not have high
enough contrast in thermal imagery, 2) emitted thermal
radiation from trees and bare ground confounded detection,
and 3) heavy tree cover (e.g., dense coniferous forest habitat)
physically obscured elk from detection. Further under-
standing and overcoming these limitations of FLIR‐
equipped UAS is critical for realizing the full potential
of this technology for management and conservation
applications.
Moose inhabiting northeastern Minnesota’s Grand

Portage Indian Reservation, USA, are an important sub-
sistence species used by the Grand Portage Band of Lake
Superior Chippewa historically and presently, but harvests
have declined in recent years concomitant with significant
(~65%) declines in moose populations throughout their
range in Minnesota over the last decade (S. A. Moore,
Grand Portage Trust Lands, unpublished data; Del
Giudice 2018). This has resulted in extensive research and
management efforts by the Grand Portage Band of Lake
Superior Chippewa and the Minnesota Department of
Natural Resources (MNDNR) to understand the drivers of
the decline (Severud et al. 2015). Mortality of adult moose
in MN has been linked to disease (Wünschmann
et al. 2015), increased parasite loads (Verma et al. 2016),
and predation (Carstensen et al. 2017). Warming temper-
atures and decreasing snow depth associated with climate
change are also thought to be contributing to their decline
by increasing thermal stress (Street et al. 2016) and allowing
for the increase of white‐tailed deer (Odocoileus virginianus)
population densities (Weiskopf et al. 2019). Deer pose a
threat to moose as they are known to carry transmissible
diseases and parasites (Wünschmann et al. 2015). Neonate
(i.e., moose calf) birthing, survival, and predation rates are
critical for understanding the future population trajectory of
moose (Severud et al. 2015, 2019), thus, the Grand Portage
Trust Lands Department initiated an intensive study of the
northeastern moose population beginning in 2008. Tribal
biologists conduct annual aerial counts to monitor pop-
ulation demographics and have fitted moose with GPS
collars to examine survival and causes of mortality. These
efforts have been undertaken to conserve moose on the
landscape and preserve a cultural icon for future generations.
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These demographic estimates became more challenging to
quantify outside of the reservation after the state of
Minnesota banned moose collaring due to initially high
capture‐induced abandonment rates during studies of calf
survival and predation (Del Giudice et al. 2015, 2018).
Forward Looking Infrared‐equipped UAS may provide a
much needed, non‐invasive tool to better estimate and track
these important demographic rates of moose calves.
In this study we attempted to determine the feasibility of using

UAS technology to detect cow moose and quantify the presence
of any neonates while minimizing disturbance of cow‐calf pairs.
Our study aimed to quantify the number of calves born per cow
and determine the length of calf survivorship through repeated
UAS flights. We also explicitly attempted to determine what
factors limited the effectiveness of UAS operations with FLIR
technology to detect moose in a heavily forested environment by
modeling the detection probability of adult moose during our 92
spring flight missions based on weather conditions, habitat type

and structure, UAS flight characteristics (e.g., flight altitude),
and the phenology of vegetation. Our research details how
wildlife researchers and managers can more efficiently utilize
UAS and FLIR technologies to collect data on large ungulates
in northern forested environments.

STUDY AREA

All UAS flights were conducted within the Grand Portage
Band of Lake Superior Chippewa Indian Reservation and
eastern extents of the Grand Portage State Forest,
Minnesota, USA (Fig. 1). Topography was highly varied
and ranged from 183m to 553 m above sea level. Mean
monthly temperatures for Grand Portage ranged between
1.89° C to 14.0° C during our study periods (May to June,
2018 and April to May, 2019). The mean minimum tem-
peratures ranged between −2.94° C to 7.94° C, and mean
maximum temperatures were between 6.67° C to 20.11° C.
Monthly precipitation ranged from 3.86 cm to 11.28 cm

Figure 1. Study area of Grand Portage Reservation and eastern Grand Portage State Forest, in northeastern Minnesota, USA. Unmanned aerial system
(UAS) launches are shown across the study area for the 2018 and 2019 field seasons.
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with a mean monthly precipitation level of 6.67 cm
(NOAA 2019). Snow depth during our study period ranged
from 0 cm to ~60 cm (M. C. McMahon, University of
Minnesota, personal observation).
Vegetation on the reservation consisted of boreal forest

with aspen‐birch (55%; Populus tremuloides and Betula pap-
yrifera), conifer (25%; Pinus strobus, P. resinosa, P. banksiana,
Abies balsamea, and Thuja occidentalis), northern hardwood
(6%; Acer saccharum and A. rubrum), swamp hardwood (3%;
Fraxinus spp.), and other (11%) communities (E. Isaac,
Grand Portage Trust Lands, unpublished data). In addition
to moose, white‐tailed deer, black bears (Ursus americanus),
and gray wolves (Canis lupus) were present in our study area.

METHODS

Data Collection
Our study population consisted of 22 cow moose fitted
with GPS‐collars with Iridium‐satellite relay capabilities
(VECTRONIC Aerospace, Berlin, Germany). Capture
and handling of moose was conducted by the Grand
Portage Natural Resources Management Department
(IACUC Protocol# 1812‐36635A). Moose locations were
recorded and stored every 30 minutes to GPS collars, with
GPS coordinates transmitted to satellites every two hours.
Adult moose movement patterns can indicate a variety of
critical information such as calving and either successful or
attempted predation events (Severud et al. 2015, Ober-
moller et al. 2019). We analyzed cow moose movements
multiple times a day to identify locations and times for safe
and efficient UAS deployment to detect cow moose and
calves. Prior to conducting flight missions above cow‐calf
pairs, we conducted initial test flights over GPS‐collared
bull moose in May of 2018 to gauge levels of disturbance
from UAS flights. We would classify a disturbance if there
were any erratic movements (i.e., fleeing from an area) that
corresponded in time to UAS launch and flight times.
Although none of these initial flights led to a behavioral
disturbance, we took precautions in our surveys of cow
moose and calves to reduce the risk of disturbance (see
below), and continued monitoring movement behavior to
identify potential disturbance responses (Hodgson and
Koh 2016).
We used a DJI Inspire 2 quadcopter (~$3,000 USD;

Shenzhen DJI Sciences and Technologies Ltd., Nanshan
District, Shenzhen, China), equipped with a FLIR Vue Pro
640 (640× 512 pixels, 32° FOV, 19mm, 30Hz) (~$3700
USD; FLIR Systems Inc., Wilsonville, OR, USA) for 2018
surveys and a FLIR Duo® Pro R (640× 512 pixels, 32° FOV,
19mm, 30Hz; ~$6350 USD) for 2019 surveys. Both thermal
sensors were one‐band sensors with a spectral interval that
measured 7.5 to 13.5 µm. The FLIR Duo® Pro R used in
2019 also featured an RGB sensor (4000× 3000 pixels,
56°× 45° FOV) that allowed us to capture color imagery si-
multaneously with thermal imagery. Survey flights were
planned and conducted using the Pix4Dcapture app (Pix4D,
Prilly, Switzerland). Thermal infrared and RGB footage were
recorded and stored onboard the UAS for review post flight.

Flights occurred from 25 May 2018 to 28 June 2018 (n= 44
flights) and 25 April 2019 to 30 May 2019 (n= 48 flights) at
varying times between morning and evening civil twilight.
Surveys were flown in rectangular grid transects centered over
the most recently updated GPS locations of cows. Rectangular
grids were used to maximize our coverage in the event that the
cow moved off of the last known location prior to launching
the UAS, and to minimize the risk of animal disturbance
(Mulero‐Pázmány et al. 2017). To minimize animal dis-
turbance from our presence on the ground, we launched the
UAS from reservation and county roads or trails that were
between 300m and 600m Euclidean ground distance from
updated moose locations. This distance also allowed us to
maintain visual contact of the UAS, and sufficient radio
communication between the remote and quadcopter. Addi-
tionally, we flew at altitudes that were near the maximum
allowable 122m (~400 ft) above ground level; altitudes ranged
from 75m to 121m depending on terrain elevations relative to
launch points.

Moose Demographic Data and Predation Events
Thermal infrared video footage was reviewed manually
post flight by human observers. Observers were trained to
detect living animals in thermal video by viewing sample
footage collected over domestic animals (e.g., domestic
bison, cows, and captive deer) of known location and
abundance, to develop a sight picture for large‐bodied
mammals in thermal imagery. The same observers re-
viewed thermal video footage for both seasons. Adult
moose and calves were visually identified from the video
footage by their shape and brightness in the footage, the
latter also by their proximity with the cow. Detections of
target moose (i.e., bright white silhouettes that often re-
sembled a large animal body with a head) were confirmed
by updated cow GPS locations collected during and post
UAS survey times. We attempted to utilize object‐based
image analysis (OBIA) to quantify moose detections from
our thermal video footage. However, we would have
needed to greatly increase the resolution of our FLIR
sensors (at an economic expense), or fly the UAS at lower
altitudes, increasing the risk of disturbing moose and
striking hazards (e.g., tall trees), to effectively apply OBIA
methods to discern moose from other objects.
For 2018 flights, moose detections were verified by

matching the position of the UAS on the flight transect
where a thermal detection was observed (based on flight
time) to the location and time stamp from the collared
moose that corresponded to that time in the flight. In 2019,
detections were verified by matching GPS coordinates of
the UAS and of the moose at given flight times. This was
possible because the FLIR Duo® Pro R used in 2019 fea-
tured geotagged video footage that provided GPS coor-
dinates for the UAS every second of survey time, whereas
the FLIR Vue Pro used in 2018 did not. Color (RGB)
footage was also reviewed for flights with positive thermal
detections as an additional verification throughout the 2019
season. Thermal detections of cows and counts of calves
were recorded for each flight.
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We investigated suspected calf predation events by flying
over known collared cow‐calf pairs after large movements
occurred in a short period of time, with the cow commonly
circling back to the suspected predation location. We con-
sidered a predation event to be positively confirmed if we
could detect the cow without the previously detected
calf. Conversely, we concluded that a predation event was
unsuccessful or did not occur by thermally detecting the calf
with its mother. Our conclusions about predation events
through remote sensing were corroborated by subsequent
on‐foot investigations.

Moose Detection Variables
To better understand what factors altered our ability to
detect moose using UAS with FLIR technology, we de-
veloped a detection model that included data on weather
conditions, UAS operations, habitat type, and vegetation
structure and phenology. Factors that we hypothesized
would influence detection included: 1) cloud cover, which
was recorded in the field from visual observations; 2) tem-
perature; 3) relative humidity; 4) wind speed; 5) mean al-
titude; 6) canopy cover; 7) forest composition; and 8) veg-
etation phenology. Temperature, humidity, and wind speed
were collected post flight with archived weather data re-
corded at the Cook Municipal airport (Cook, MN, USA;
47.82°N, −92.69°W; National Oceanic and Atmospheric
Administration 2019). We recorded altitude of the UAS
throughout each flight and summarized these data as mean
altitude for our detection models. Light Detection and
Ranging (LiDAR) was collected throughout the region
during May 2011 (a leaf‐free period in the study area) at a
rate of 1 pulse/meter with a vertical accuracy RMSE of
5.0 cm and a horizontal accuracy of 1.16 m (Minnesota
Geospatial Information Office 2018). We estimated percent
forest canopy as the percentage of LiDAR returns that
were >3m above the ground, based on subtracting the re-
turn values from a Digital Elevation Model (DEM) with a
spatial resolution of 3 m, within a 30‐m resolution grid that
covered the study area. We assigned each flight a canopy
cover percentage based on the maximum canopy cover value
within 20 m of the moose’s GPS‐location during the UAS
flight (see rationale in the Moose Detection Modeling

section). Because we believed conifer cover would reduce
moose detection, even in early spring, we included the total
percentage of conifer and mixed conifer‐deciduous forest
within the same buffer. Land cover was derived from a
multitemporal composite of Landsat 8 imagery combined
with LiDAR data (Minnesota Geospatial Information
Office 2016). To estimate the phenology on a given day at a
particular UAS flight area, we used the enhanced vegetation
index (EVI) from the MODIS data set collected by the
National Aeronautics and Space Administration (NASA).
The MODIS dataset provides remotely sensed estimates of
vegetative greenness at a 500‐m spatial resolution compos-
ited over a 16‐day period (MODIS/Terra Vegetation
Indices 16‐day L3 Global 500‐m resolution, MOD13A1;
Didan 2015); we used the MODIS package (Didan 2015)
in program R (v 3.6.1, R Core Team 2019) to download the
data. Moose GPS‐locations were overlaid on the EVI raster
that temporally corresponded with the field data collection.

Moose Detection Modeling
After our first season in 2018, we used effect plots to
visualize the relationship between the variables and adult
moose detection (Table 1). We were specifically looking for
what conditions influenced detection so we could improve
our success during the 2019 season. The graphs indicated
that decreased temperature and canopy cover, and greater
cloud cover all increased detection. When modeling the
2018 data, we did not investigate the influence of EVI. We
have provided an example of the effects of cloud cover from
flights over a captive bison (Bison bison) herd located at the
University of Minnesota’s Cedar Creek Ecosystem Science
Reserve where we tested our UAS and FLIR sensors prior
to conducting surveys of wild moose (Fig. 2). Thermal
survey flights during clear sky conditions resulted in unclear
bison detections (Fig. 2A) relative to overcast sky conditions
(Fig. 2B). During our second field season, we maximized
detectability of moose by conducting flights earlier in the
season (starting 25 April instead of 23 May), earlier in the
morning (when ground temperature was at its lowest), and
on days with greater cloud cover.
We hypothesized that canopy cover would have a strong

influence on our ability to detect moose with our FLIR

Table 1. Detection model covariate names and descriptions with units, mean and SE, and ranges in observations, combined from 2018 and 2019 flight data
from northeastern Minnesota, USA.

Variable Definition Units Mean (SE) Range

Altitude Mean altitude of the UAV (m above ground) Meters above ground 106.6 (1.20) 82.3–132.6
MooseDetect Whether adult moose was detected or not (response variable) Binary (0= no, 1= yes) 0.57 (0.05) 0–1
Canopy Max. proportion of the canopy >3 m with 20‐m buffer of

the moose
Proportion 0.50 (0.02) 0.05–0.76

Cloud Whether cloud cover was considered overcast or not Binary (0= no, 1= yes) 0.16 (0.04) 0–1
Conifer Proportion of the landcover in a 20‐m buffer around the

moose that was conifer or mixed forest
Proportion 0.25 (0.04) 0–1

EVI Enhanced vegetation index—remotely sensed metric
of vegetative greenness

Index (possible range:
−2000–10000

4210 (157.4) 2145.0–6843.0

Humid Relative humidity recorded at nearest airport Proportion 49.76 (1.71) 19.0–87.0
LaunchTime UAV launch time (hours and minutes) Hours 9:35 (00:20) 4:00–17:00
Temp Temperature °C 13.52 (0.74) −1.11–27.22
Wind Wind speed recorded at the nearest airport Knots 5.42 (0.29) 0.00–11.3
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sensor, so we created a set of univariate models in which we
regressed different spatial extents of both the mean and
maximum canopy cover around a given moose’s GPS‐
location during the time of flight with our detection re-
sponse. Each linear model contained one value for the
scaled mean or maximum canopy cover at buffers of 20 m,
25 m, 30 m, 50 m, and 100 m. We used a generalized linear
model structure with a binomial distribution in the glm
function of program R and assessed the fit of each model
using Akaike’s Information Criteria adjusted for small
sample sizes (AICc). The 20‐m buffer with the maximum
value for canopy cover explained the most deviance in
moose detection so we used it in the full model of moose
detection (see below) and used a 20‐m buffer to create the
total percentage of conifer and mixed conifer‐deciduous
forest.
To formally model moose detection (binary response:

0= present but not detected, 1= present and detected) for
our combined two spring field seasons, we developed a set of
15 a priori models and a null model (intercept only). We
restricted the total number of model parameters to 3 such
that each model either contained 3 additive covariates or
an interaction with additive effects for the 2 associated
variables. We used the same generalized linear model
structure described above for the canopy‐cover buffer anal-
ysis. Within each model, all independent variables were
centered and scaled by their corresponding standard devia-
tion to improve model convergence, and we assessed relative
model fit using AICc. Prior to fitting the models, we re-
moved 3 observations due to covariate completeness (n= 89
flights).
We determined the strength of influence for each co-

variate in the top model(s) by creating effect plots using the
package ggeffects (Lüdecke 2018) in program R. Each plot
illustrates the mean and 95% confidence interval of pre-
dicted moose detection at each value of the covariate while
all other variables are held constant at their mean values.
We predicted moose detection across the 2.5% to the 97.5%
quantile values to assess the change within the 95% dis-
tribution of the values we collected for the given covariate.
All covariates used in the effect plots were created at their

original scale (not centered and scaled) to better illustrate
the relationships with familiar values (e.g., % of canopy
cover, degrees Celsius).

Post Hoc Modeling
We collected sky condition observations from the same
weather station that we used for our other weather‐based
covariates. We created an additional covariate using the
National Oceanic and Atmospheric Administration’s
(NOAA 2019) cloud coverage classification to compare
against our original field‐based observation data of cloud
cover (Cloud). The weather station‐based covariate was
binary with the NOAA classification for overcast coded as a
1 while all other observations, including missing, were
coded as 0. To determine the relative importance of field vs
weather‐station derived cloud cover, we fit models with the
centered and scaled values for Cloud (field‐based) and
compared the AICc and coefficient estimates to those from
models based on the weather station estimates of cloud
cover (n= 89 flights). We then removed all observations
that corresponded to the weather station‐based covariate’s
classification of missing and repeated the comparison
(n= 82 flights). When comparing the detection percentages
between field and weather station‐based sky conditions, we
had more flights with weather station‐based data because
some flights had missing field‐based observations.

RESULTS

We conducted 92 total thermal UAS flights over cow moose
from 2018 to 2019. Combined detection success over 2018
and 2019 was 57%; however, modifications to flight timing
and procedures increased detection success from 25% in
2018 to 85% in 2019. Over the 2 years of our study we
detected 18 individual cows, with multiple detections per
cow. We had a combined calf detection success of 54% over
the 2 study periods, confirming the detection of 18 in-
dividual calves. Similar to adult moose, calf detection im-
proved from 27% in 2018 to 79% in 2019 after making
adjustments to the timing of flights. During 2019, we
confirmed 3 separate suspected predation events of calves
with UAS thermal survey flights and disproved one that was

Figure 2. Side‐by‐side comparison of thermal infrared photos of a captive bison herd captured during clear sky conditions (A) and overcast sky conditions
(B). Imagery was collected at the University of Minnesota’s Cedar Creek Ecosystem Science Reserve, USA, during July 2018. This contrast demonstrates the
positive effect that overcast sky conditions have on thermal detection.
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thought to be a successful predation. Only 46% of thermally
detected moose in 2019 could be seen in corresponding
RGB footage upon visual inspection. Vegetation and dark‐
colored terrain often obscured moose in RGB footage,
whereas FLIR footage allowed for easy detection (Fig. 3).

Detection Analysis
Our top model of adult moose detection included the ad-
ditive influences of vegetative greenness (EVI; β =−1.37,
SE= 0.32), whether cloud cover was considered overcast or
not (Cloud; β = 1.13, SE= 0.43), and maximum canopy
cover (Canopy; β =−1.10, SE= 0.38; scaled and centered;
Table 2, Fig. 4). From the lowest to the highest values of
the 95% distribution of observed EVI values (Fig. 4A), our
top‐fitting model predicted moose detection would decrease
from 92.6% (95% CI= 80.7%–97.4%; EVI= 2160) to
18.0% (95% CI= 6.4%–41.3%; EVI= 6512). Detectability
increased during flights with overcast skies (X = 96.2%,
95% CI= 73.2%–99.6%) relative to flights occurring during
conditions without overcast skies (X = 53.7%, 95%
CI= 38.3%–68.5%; Fig. 4B). Moose detection also de-
creased with more canopy cover around the moose’s

location (20 m buffer) from a prediction of 96.4% (95%
CI=77.2%–99.5%; Canopy= 13.1%) to 29.9% (95%
CI= 13.3%–54.2%; Canopy= 70.7%; Fig. 4C). Temper-
ature was not included in the top model; however, it did
exhibit a somewhat strong negative effect on moose
detection (Temp; β =−0.90, SE= 0.37).

Post Hoc Analysis of Cloud Cover
Weather station‐based observations of cloud cover did not
explain as much variation in moose detection as field‐based
observations of cloud cover. Our field‐based assessment of
overcast (Cloud= 1) was associated with 13 moose de-
tections and only one non‐detection (92.9% [13/14]). In
comparison, the weather station‐based classification of
overcast was associated with a positive detection during 16,
and a non‐detection during 4, flights (80% [16/20]). When
our best‐supported model (n= 89 flights) included weather
station‐based data where missing data were considered not
to be overcast (coded as 0), AICc increased by 7.28; the
scaled and centered coefficient value (β = 0.58, SE= 0.30)
was smaller than our original covariate estimate for Cloud
(β = 1.13, SE= 0.43). Models where all missing values in

Figure 3. Comparison of UAS‐gathered RGB imagery (A) and thermal infrared imagery (B) of a cow moose with two calves in northeastern Minnesota,
USA, during spring of 2019. The photos were captured at the same time and location over this cow and her calves, which demonstrates the advantage of
increased detection success from thermal infrared technology over RGB photography.

Table 2. All 16 models considered when assessing the factors influencing the detection (binary) of adult moose in northeastern Minnesota, USA, using
UAS with thermal sensors during the spring of 2018 and 2019. We used generalized linear models with a binomial distribution and restricted the number of
parameters to a maximum of three.

Model logLik ΔAICc Weight

EVI+Cloud+Canopy −35.55 0.00 0.86
Canopy+EVI+Temp −37.66 4.24 0.10
Cloud+EVI+Temp −39.16 7.22 0.02
Canopy+EVI+Canopy ×EVI −40.05 9.02 0.01
Cloud+Temp+Cloud ×Temp −42.17 13.25 0.00
Conifer+Cloud+Temp −42.64 14.19 0.00
Altitude+LaunchTime+Temp −42.82 14.56 0.00
EVI+Humid+Wind −43.87 16.64 0.00
Altitude+Canopy+Altitude ×Canopy −44.73 18.37 0.00
Altitude+EVI+Altitde ×EVI −45.21 19.32 0.00
Altitude+Conifer+ LaunchTime −47.00 22.92 0.00
Canopy+Cloud+Humid −47.33 23.57 0.00
Canopy+Conifer+Canopy ×Conifer −52.83 34.58 0.00
Cloud+Humid+Wind −54.98 38.87 0.00
Humid+LaunchTime+Wind −56.29 41.50 0.00
Intercept only (NULL) −60.74 43.95 0.00
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the weather station‐based data were removed (n= 82
flights) resulted in an increased AICc of 7.49 compared to
the field‐based observation cloud cover model; the covariate
estimates were again smaller as well (weather station‐based
cloud cover: β = 0.61, SE= 0.32; field observation cloud
cover: β = 1.17, SE= 0.44).

DISCUSSION

We successfully applied UAS technology and FLIR sensors
to detect collared adult cow moose and calves in a heavily
forested region of northeastern Minnesota. The increase in
detection success from our first to our second field season
was a result of developing preliminary relationships between
adult moose detection and environmental and temporal
covariates. This improvement provides validation that our
final detection model (which incorporated both years of
flight data) captured useful relationships for researchers
planning to conduct ungulate surveys with UAS and FLIR
technology. We maximized detection success during our
second season by conducting survey flights earlier in the
calving season to take advantage of leaf‐free conditions. We
also concentrated our flight efforts within the early morning
hours when temperatures were coolest, and less thermal
energy was being emitted from ground objects. Snow cover
present in our second season (2019) during the early spring
also improved thermal detection by covering ground objects
and maximizing the thermal contrast between moose and
their environment. Importantly, our research provides a
valuable method for determining ungulate reproductive
success and calf survival using a less invasive method than
handling and collaring calves, which may induce additional
stressors (Del Giudice et al. 2015).
Our FLIR‐equipped UAS demonstrated clear advantages

over conventional methodology for monitoring moose
calving success by increasing animal detectability while re-
ducing survey cost and effort. The inclusion of FLIR
sensing with UAS was crucial for detecting cow‐calf pairs in

forested environments. Moose were often obscured by
canopy cover in RGB footage, whereas FLIR footage al-
lowed for easy detection (Fig. 3). Challenges of visual de-
tection without FLIR are also reflected in the state‐wide
aerial counts conducted by the MNDNR. The MNDNR
reported an average estimated detection probability of 61%
for their 2018 aerial survey using conventional aircraft and
visual observation (Del Giudice 2018), compared to our
detection probability of 85% using UAS and FLIR tech-
nology. Further, unmanned aerial systems offered a rela-
tively cheap method to collect aerial data (e.g., Vermeulen
et al. 2013), and following the initial financial investment
for UAS equipment our operating costs were minimal, with
ground transportation being our largest field expenditure.
Integrating OBIA methods for detecting wildlife in aerial

imagery is a promising approach that can accurately auto-
mate detection (Witharana and Lynch 2016, Chabot
et al. 2018). Chrétien et al. (2016) applied OBIA to detect
ungulates from UAS imagery and reported 100% detection
rates in some surveys; this success was accomplished with
very high‐resolution sensors (Guirado et al. 2017). We
employed an economical FLIR sensor with relatively low
resolution (640 × 512), as is common for wildlife research
(Witczuk et al. 2018), and experienced challenges using
OBIA. Flying the UAS at lower altitudes may have com-
pensated for low resolution but would have increased the
potential to disturb moose and have been problematic for
terrain avoidance. Dense forest further convoluted the
OBIA process because of the many bright returns caused by
heated, non‐living ground objects among the trees. These
objects sometimes resembled moose in brightness and shape
(e.g., vegetation would distort the recognizable silhouette of
a moose), greatly decreasing the ability of OBIA software to
accurately classify objects. Instead, we opted to manually
review the video footage, which served to be a simple
and efficient way to identify collared moose, and was es-
pecially effective for identifying calves present with cows

Figure 4. Detection success of GPS‐collared adult cow moose in northeastern Minnesota, USA, during spring of 2018 and 2019 using thermal technology
mounted on a UAS. Moose detections are plotted as raw values on the y‐axis as either 100% (present and detected) or 0% (present but not detected). The
predicted mean and 95% confidence intervals are based on the best‐supported model for detection. We predicted moose detection for all sampled values of A)
the remotely‐sensed enhanced vegetation indices (EVI) over the moose’s location, B) whether or not the sky was overcast during the flight (field‐observation)
while holding the other values in the best‐supported model at their means, and C) maximum canopy cover around the moose’s GPS location during the time
of the flight.
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(distinguishing different sized targets with OBIA adds
further complexity). Manual detection required ~16 com-
bined hours per observer over our two seasons, averaging
~10 min per UAS flight for each observer. Until sensors
with higher resolution become more economical, or OBIA
methods overcome lower resolution limitations, the tech-
nical hurdles of implementing OBIA may only be worth-
while for researchers with access to high‐resolution sensors
and those attempting to detect non‐collared animals, espe-
cially over large spatial extents.
The accuracy of conventional methodology for mon-

itoring reproduction (e.g., observing calf tracks) can also be
questionable (Y. C. Ibrahim, Grand Portage Trust Lands,
personal communication). The use of UAS and FLIR
sensing enabled us to confirm suspected predation events
with greater certainty. While GPS data from collared cows
can show movements indicative of predation events,
as described by Obermoller et al. (2019), relying solely on
this method does not always reliably detect the fate of the
calf. For example, after a cow in our study had demon-
strated the indicative movements of a predation event,
UAS thermal imagery revealed that the calf had survived
and was still with the cow after the event. This suggests
that repeated UAS flights over collared cows can provide a
low‐disturbance method to monitor calf survival during the
first month of their lives, and again following leaf fall in
autumn.
Unmanned aerial systems were less disruptive than typical

approaches for monitoring calving success and calf survival.
Capturing moose calves and fitting them with GPS or VHF
collars is a popular method for examining calf survival
(Ballard et al. 1981, Patterson et al. 2013, Severud
et al. 2015); however, this approach has an inherent risk of
capture‐related mortality, with abandonment shown to be
the leading cause of capture‐induced calf mortality
(Livezey 1990). Del Giudice et al. (2015) reported that
18.4% of captured neonate moose were abandoned within
48 hours post capture during an initial study of calf mor-
tality in northeastern Minnesota. Phillips and Alldredge
(2000) observed that continued human disturbance of elk
from ground approaches during the peak calving season
decreased calf‐cow ratios in their study population, and it is
conceivable that similar impacts may be experienced by
moose. Our survey protocols were designed to minimize the
chance of UAS‐specific moose disturbance, and we gauged
levels of disruption by monitoring animal behavior (derived
from GPS‐collar relocation data) following each flight. We
identified one individual cow who made a >1 km movement
beginning just 7 min after the UAS was launched. This rate
of movement is not unusual for moose (E. Isaac, Grand
Portage Trust Lands, personal communication); however, it
did not occur with other moose during other flights. Be-
cause we approached this site on foot through dense vege-
tation (for other flights, we limited the noises of our ap-
proach by launching from a gravel road accessed by vehicle
or from a walking trail), it is possible that our approach,
rather than the UAS, ultimately caused the cow to flee
the area.

We considered a lack of behavioral response by moose to
be evidence of no disturbance from UAS flights, similar to
Vermeulen et al. (2013), and Goebel et al. (2015) in their
UAS studies of elephants and penguins (Pygoscelis spp.),
respectively. It is important to keep in mind, however, that
disturbance may cause unseen physiological stress in wildlife
that do not exhibit any overt behavioral response (Ditmer
et al. 2015). Although animals may acclimate to repeated
low‐altitude UAS flights (Ditmer et al., 2019), we echo the
UAS ethical guidelines outlined by Hodgson and Koh
(2016) regarding wildlife disturbance: flights should be
conducted no lower in altitude than is necessary for data
collection and repeat flights over individuals should only be
done when it is necessary to collect critical data.
One major challenge of conducting wildlife surveys with

FLIR‐technology is that solar energy can reduce detection
by complicating the identification of target animals. Solar
radiation heats the ground and non‐target objects (e.g.,
rocks, stumps, trees), which in turn create noise, or thermal
bright spots in an image, leading to potential false‐positive
detections or masking of target animals (Dunn et al. 2002,
Chrétien et al. 2016, Lethbridge et al. 2019). Similar to
Millette et al. (2011), who conducted thermal surveys of
moose from a manned aircraft, our results for cloud cover
and temperature on moose detection demonstrated this
phenomenon. Increased cloud cover improved thermal de-
tection probability because clouds blocked some amount of
solar energy from reaching objects on the ground, thus
maximizing the thermal contrast between moose and their
surroundings and reducing the potential for misidentifying a
non‐moose object as a moose. Localized changes in cloud
cover and the resulting thermal heating of ground objects
were illustrated by our findings that field‐based cloud cover
observations explained more variation in detection in our
model than weather station‐based observations. For ex-
ample, during preliminary testing of our UAS, thermal
imagery collected on different days (clear vs. overcast), but
at the same time of day and with similar ambient temper-
atures (20.0° C and 16.1° C), dramatically altered our ability
to visually count the known number of individual bison
present (see Fig. 2).
Remotely‐sensed data describing forest canopy cover and

phenological measures of greenness, such as NDVI or EVI,
can greatly enhance UAS operators’ understanding of where
and when to conduct flights to maximize efficiency in for-
ested environments. Although coniferous cover has been
repeatedly shown to limit thermal detection of animals
(Garner et al. 1995, Dunn et al. 2002, Potvin and
Breton 2005), the impacts of deciduous canopy phenology
are less well known. As expected, we found that canopy
cover and EVI negatively influenced detection success, since
greater closure of deciduous tree canopy and denser green
vegetation can block the thermal energy of moose from
reaching our FLIR sensor. This was supported by our ob-
servation of declining detection success in 2019 as the de-
ciduous tree canopy progressed from leafless towards full
leaf‐out. Indeed, even when we could detect moose that
were partially obscured by vegetation, their thermal image
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appeared distorted in both shape and intensity of the heat
signature, a phenomenon also reported by Wiggers and
Beckerman (1993). Although FLIR technology greatly
enhanced our ability to detect moose relative to RGB alone,
we still failed to detect moose that were completely obscured
by deciduous tree canopy or located within very dense
conifer stands.
A limitation to using NASA’s MODIS products to assist

in planning surveys is the time lag between the median date
of the 16‐day composite EVI data and when it becomes
publicly available (~1 month based on our recent down-
loads). Using greenness indices from previous years could
allow for identifying areas with less vegetative cover (in-
creased detection), but the current lag in data availability is a
significant hurdle to successfully incorporating this product
into surveys of the same year. Winter and leafless periods of
fall and spring clearly yield the greatest potential for suc-
cessful FLIR detection. The increase in detection success
during our second field season was certainly a direct result of
our efforts to fly prior to deciduous leaf‐out. It is important
to remember that our study occurred in a boreal ecosystem
near 48° N latitude. Thus, the strong relationships we found
in our detection models may only be valid in forested en-
vironments and where temperature differentials between
target species and ambient temperatures are relatively large
(i.e., temperate or cooler environments). When possible, we
recommend that researchers conduct test flights with cap-
tive animals before initiating extensive studies, to familiarize
themselves with the way local vegetation types and structure
may hinder detection during field research.
Despite the clear benefits of UAS for wildlife surveys,

current regulations still reduce operational efficiency. Al-
though much has improved in the last five years regarding
ease of compliance with federal regulations, many of the
regulatory hurdles outlined by Vincent et al. (2015) still
stand. Most importantly, regulations prohibiting operation
beyond visual line of sight (BVLOS) or at night severely
limited our ability to efficiently target animals. The BVLOS
requirement, which requires the operator to maintain un-
aided visual contact with the UAS at all times of the flight,
was especially burdensome in our forested study area.
Likewise, we were prohibited from surveying during the
night and early morning before dawn—times when the
thermal contrast between wildlife and the ground, as well as
other non‐living objects, are at their greatest (Mulero‐
Pázmány et al. 2014, Witczuk et al. 2018). Indeed, Ireland
et al. (2019) concluded that conducting white‐tailed deer
surveys with FLIR‐equipped UAS was optimized at night
because of maximized thermal contrast. The Federal Avia-
tion Administration can grant waivers to relax some flight
restrictions, but approvals are not guaranteed, and the ap-
plication process can be lengthy and often unrealistic for the
temporal demands of field seasons.
Hardware limitations of UAS impact their effectiveness

and ease of use for inexperienced UAS pilots and crew.
Short battery endurance, as was outlined by Linchant et al.
(2015), is one such limitation. Our maximum flight en-
durance with our payload configuration was ~20 min, which

reduced our survey size and maximum distance the UAS
could travel from launch points when visual contact was not
an issue. Endurance limitations were not insurmountable
for calf monitoring of GPS‐collared moose; however, short
flight endurance combined with BVLOS restrictions
currently limit the potential for UAS to be applied to large‐
scale population monitoring over extensive forested areas.
Manned aircraft still excel in such situations due to greater
autonomy.
Weather conditions impacted our ability to operate and

successfully detect animals. Precipitation prevented flight
operations because of the potential for water damage to
equipment (Duffy et al. 2017) and the negative effect on
thermal image quality. Burke et al. (2018) described how
condensed airborne water droplets, such as fog, will decrease
data quality of FLIR imagery due to water vapor readily
absorbing longwave radiation (Gordon et al. 2007). Our
results from test flights in foggy conditions corroborated
this. Heavy winds can impact flight stability and be haz-
ardous for UAS operations in close proximity to trees, thus
Weissensteiner et al. (2015) recommended that operations
in forested environments only be conducted during calm
wind conditions. Flight turbulence also decreased the
quality of our thermal data by creating blurred imagery and
shaky video footage. Winds greater than 35 km/hr during
our study were rare, but these conditions and other in-
clement weather grounded our flight operations for safety
and data quality for ~16% of our attempted field days.
Our reliance on a weather reporting station ~215 km from

our flight operations was done to standardize our weather
data and was the nearest and most comparable source of
historic weather data. However, we recommend a field‐
based weather meter for future operations to collect meas-
urements at specific flight locations. Field‐based meters
collect real‐time weather conditions, which should be more
robust for detection modeling and flight planning than
weather station‐based data. Findings from our post hoc
analysis demonstrated that weather station‐based cloud
cover data explained less variation in moose detection than
our field‐based observations due to localized variation in
cloud cover. We hypothesized that temperature and relative
humidity, which were also collected from the weather sta-
tion, would be significantly associated with moose de-
tection. However, neither were in our top model; again,
potentially due to the different conditions experienced at the
flight location versus the weather station.
Our work served to hone UAS methodology for the ap-

plication of wildlife research. We found that a readily
available off‐the‐shelf UAS equipped with FLIR technology
was an effective platform for detecting collared moose and
counting and monitoring calves in a densely forested envi-
ronment. We identified several ongoing environmental
challenges and technical limitations, but we also realized
significant improvement in detection success from one
season to the next. Our efforts to model factors driving
moose detectability allowed us to establish best practices for
maximizing UAS efficacy with FLIR sensing for surveys of
forest‐dwelling animals. It is likely that the continued
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improvement and reduced costs of UAS (Baxter and
Hamilton 2018), and associated sensors, will open new
doors to the types of data collection possible and expand on
potential target species. We postulate that FLIR sensor‐
equipped UAS—especially with the capability to collect
geo‐tagged thermal imagery—could be effective for mon-
itoring reproductive success (e.g., birthing success, twinning
rate, and young survival) of other GPS‐collared, large‐
bodied mammals.
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