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Table of contents short summary 27 

Ungulate populations are highly dynamic and require efficient survey methodology to inform 28 

management efforts. This study aimed to assess the efficacy of thermal sensor-equipped 29 

unmanned aerial systems (UAS) for estimating white-tailed deer densities, and found that UAS-30 

based deer density estimates were comparable to conventional fecal pellet-group count-based 31 

density estimates. We find that UAS surveys offer an effective and temporally sensitive method 32 

for estimating wild ungulate densities. 33 

 34 

Abstract 35 

Context  36 

Ungulate populations are subject to fluctuations caused by extrinsic factors and require efficient 37 

and frequent surveying to monitor population sizes and demographics. Unmanned aerial systems 38 

(UAS) have become increasingly popular for ungulate research; however, little is understood 39 

about how this novel technology compares to conventional methodologies for surveying wild 40 

populations.  41 

Aims 42 

We examined the feasibility of using a fixed-wing UAS equipped with a thermal infrared sensor 43 

for estimating the population density of wild white-tailed deer (Odocoileus virginianus) at the 44 

Cedar Creek Ecosystem Science Reserve (CCESR), Minnesota, USA. We compared UAS 45 

density estimates to those derived from fecal pellet-group counts. 46 

Methods 47 

We conducted UAS thermal survey flights from March to April of 2018 and January to March of 48 

2019. Fecal pellet-group counts were conducted from April to May in 2018 and 2019. We 49 
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modeled deer counts and detection probabilities and used these results to calculate point 50 

estimates and bootstrapped prediction intervals for deer density from UAS and pellet-group 51 

count data. We compared results of each survey approach to evaluate the relative efficacy of 52 

these two methodologies. 53 

Key Results 54 

Our best-fitting model of certain deer detections derived from our UAS-collected thermal 55 

imagery produced deer density estimates (X̅ = 9.40, 95% prediction interval = 4.32–17.84 56 

deer/km2) that overlapped with the pellet-group count model when using our mean pellet 57 

deposition rate assumption (X̅ = 7.01, 95% prediction interval = 4.14–11.29 deer/km2). Estimates 58 

from our top UAS model using both certain and potential deer detections resulted in a mean 59 

density of 13.77 deer/km2 (95% prediction interval = 6.64–24.35 deer/km2); similar to our pellet-60 

group count model that used a lower rate of pellet deposition (X̅ = 10.95, 95% prediction interval 61 

= 6.46–17.65 deer/km2). The mean point estimates from our top UAS model predicted a range of 62 

136.68–273.81 deer, and abundance point estimates using our pellet-group data ranged from 63 

112.79–239.67 deer throughout CCESR.  64 

Conclusions  65 

Overall, UAS yielded similar results to pellet-group counts for estimating population densities of 66 

wild ungulates; however, UAS surveys were more efficient and temporally sensitive.  67 

Implications 68 

We demonstrated how UAS could be applied for regularly monitoring changes in population 69 

density. We encourage researchers and managers to consider the merits of UAS and how they 70 

could be used to enhance the efficiency of wildlife surveying. 71 

 72 
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Introduction 73 

The ability to collect data on population size and demographic vital rates frequently, accurately, 74 

and efficiently is critically important for monitoring wildlife populations undergoing rapid 75 

changes. Numerous ungulate populations throughout North America are in flux as a result of 76 

hunting pressure (Bonenfant et al. 2009), climatic and land use changes (Plante et al. 2018), 77 

disease (Edmunds et al. 2016), and changes to biological communities (Mech et al. 2018). 78 

White-tailed deer (Odocoileus virginianus), have adapted to and exploited various anthropogenic 79 

landscape and climatic changes resulting in a vast expansion of their geographic ranges and 80 

population densities (Dawe and Boutin 2016). Measuring the changes in deer populations is 81 

important to inform management actions intended to reduce ecological impacts associated with 82 

overgrazing (Mysterud 2006) and inter- and intraspecific disease transmission (Jennelle et al. 83 

2014; Ditmer et al. 2020). 84 

The recent rise in the use of unmanned aerial systems (UAS) for surveying wildlife 85 

populations is an especially attractive tool for monitoring dynamic populations because UAS 86 

offers a cheaper, safer, and more flexible alternative to conventional aircraft (Sasse 2003; Watts 87 

et al. 2010). Hourly operating costs may be reduced by as much as 82% with UAS, as compared 88 

to conventional aircraft (Vermeulen et al. 2013) and the logistics and regulations regarding their 89 

usage continue to diminish (Werden et al. 2015), especially when compared to manned aircraft 90 

flights (Linchant et al. 2015). Importantly, UAS may also increase survey accuracy as compared 91 

to traditional ground-based wildlife surveys (Chabot and Bird 2012). Hodgson et al. (2018) 92 

demonstrated that UAS data were on average 43% to 96% more accurate than replicated ground-93 

based counts of seabirds within their colonies. When operators follow principles to reduce 94 

disturbance to wildlife (Hodgson and Koh 2016), unmanned aerial systems can minimise animal 95 
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disturbance by removing the need to approach animals on foot (Krause et al. 2017), reducing the 96 

time humans spend in close proximity to study species (Weissensteiner et al. 2015), and by 97 

creating less noise than conventional aircraft (Bennitt et al. 2019).  98 

UAS equipped with forward looking infrared (FLIR) sensors are a promising option for 99 

monitoring fluctuations in population size because wildlife surveys using UAS can be repeated 100 

frequently (Allan et al. 2018), assuming proper flight conditions, and can reduce operational 101 

costs (Elsey and Trosclair 2016) while improving survey accuracy (Lethbridge et al. 2019). 102 

Thermal sensors capture thermal radiation (i.e., body heat from animals), and thus increase the 103 

detection probability of warm-bodied animals, even at night or with partial obscuration from 104 

vegetation (Gill et al. 1997; Mulero-Pázmány et al. 2014; Montague et al. 2017). Aircraft-105 

mounted thermal sensors improved detection of white-tailed deer relative to traditional ground-106 

based spotlight surveys (Naugle et al. 1996). Due to the reduction in size and cost of both FLIR 107 

sensors and UAS, many researchers and managers are deploying them for ungulate research and 108 

population monitoring (Israel 2011; Lhoest et al. 2015; Chrétien et al. 2016; Witczuk et al. 2018; 109 

Beaver et al. 2020; McMahon et al. 2021). 110 

Numerous technologies and methods, such as UAS-based approaches, are available for 111 

surveying critical population parameters; however, determining which ones provide the best 112 

balance of economic and time constraints on wildlife professionals is a constant challenge. 113 

Additionally, new methods and technologies may be resisted by agencies because of potential 114 

differences with historical baseline estimates; thus, assessing how new approaches compare to 115 

previously well-established methods is an active and important process for improving population 116 

monitoring. Ireland et al. (2019) found that UAS thermal surveys had greater spatial coverage 117 

and increased operational feasibility relative to camera trap surveys for detecting white-tailed 118 
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deer at night. However, it is also important to understand how estimates from new methodologies 119 

compare to established, ‘low-tech’ methods, and to detail the tradeoffs in the costs, efforts, and 120 

learning curves among them. For example, Preston et al. (2021) compared the efficacy of UAS 121 

surveys to traditional spotlight surveys for deer, and found that spotlight approaches were 122 

underestimating deer densities.  123 

Here, we compare population density estimates derived from a UAS with a mounted 124 

FLIR sensor to estimates based on fecal (pellet-group) surveys, a method frequently used to 125 

estimate the density of ungulate populations (Bennett et al. 1940; Eberhardt and Van Etten 126 

1956). Pellet-group counts have been used for decades, and are still in use today (Gable et al. 127 

2017), because of their cost effectiveness and ease of implementation. A major drawback of the 128 

approach is the requirement to estimate deer defecation and pellet decay rates, which can be 129 

difficult to obtain due to seasonal variation in diet and environmental conditions (Wallmo et al. 130 

1962; Rogers 1987). 131 

Our objectives were to: 1) examine the feasibility of using a fixed-wing UAS for 132 

detecting wild white-tailed deer (hereafter referred to as deer) in a forest-prairie interface, 2) 133 

determine deer population density from counts of deer in FLIR imagery, and 3) compare deer 134 

density estimates from UAS-gathered data to deer density estimates from pellet-group counts. 135 

We aim to provide information to wildlife professionals about whether UAS technology provides 136 

a significant advantage over cheaper and simpler conventional methodology, and how wildlife 137 

managers can most efficiently employ UAS technology to achieve research and management 138 

goals. 139 

 140 

Study area 141 
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Surveys were conducted at the Cedar Creek Ecosystem Science Reserve (CCESR); located ~50 142 

km north of Saint Paul, Minnesota, USA, near Bethel, Minnesota, in Anoka and Isanti counties 143 

(Fig. 1). This is a 2,200 ha experimental ecological reserve that the University of Minnesota 144 

operates in cooperation with the Minnesota Academy of Science (Cedar Creek Ecosystem 145 

Science Reserve 2019). Elevation at the site was consistent and ranged between 270 m to 295 m 146 

above sea level. Mean monthly temperatures at CCESR during our study period (March and 147 

April of 2018 and January to March of 2019) ranged between -13.11 °C to 0.44 °C, mean 148 

minimum temperatures were between -18.72 °C to -6.17 °C, and mean maximum temperatures 149 

ranged between -8.0 °C to 7.11 °C. Mean monthly precipitation ranged from 0.91 cm to 5.92 cm 150 

in rain and snow water equivalent (SWE). These weather data were collected by the Andover 151 

National Weather Service Reporting Station, ~ 19 km southwest of our study site (MNDNR 152 

2019). 153 

The CCESR property was located within the meeting point of western prairie ecosystems, 154 

northern hardwood forests, and eastern deciduous forests (Cedar Creek Ecosystem Science 155 

Reserve 2019). Land-cover types at CCESR included deciduous forest, conifer forest, forested 156 

wetland, emergent wetland, agriculture, grassland, developed areas, and open water (MN Land 157 

Cover Classification, 2013). Common wildlife species included white-tailed deer, coyote (Canis 158 

latrans), black bear (Ursus americanus), and wild turkey (Meleagris gallopavo), as well as 159 

various mesomammals. 160 

 161 

Methods 162 

UAS surveys  163 
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We conducted UAS thermal surveys across the CCESR property from March to April of 2018 164 

and from January to March of 2019. We used a Sentera PHX Pro fixed-wing UAS equipped with 165 

a FLIR Vue Pro 640 (640 x 512 pixel resolution, 32° FOV, 19 mm lens, 30 Hz) (FLIR Systems 166 

Inc., Wilsonville, OR, USA) thermal sensor to detect white-tailed deer. We selected a fixed-wing 167 

UAS in favor of a multi-copter for increased flight endurance (Jiménez López and Mulero-168 

Pázmány 2019) and reduced noise levels (M. McMahon, University of Minnesota, personal 169 

observation) to minimise wildlife disturbance. Survey plot locations were selected based on the 170 

availability of landing sites and our ability to maintain visual line of sight with the PHX. We 171 

identified landing zones across the CCESR property by intersecting areas of the highest relative 172 

elevation (Gesch et al. 2002) with areas of open and dry habitat types (NLCD 2011) using 173 

program R (R Core Team 2019). Launching from areas of higher relative elevation allowed us to 174 

maintain visual line of sight with the UAS during its course of flight (Federal Aviation 175 

Regulation 107.31). We considered open and dry areas of at least 335 m long and 30 m wide, 176 

depending on wind conditions, to be safe landing areas for the PHX. Flight survey plots were 177 

expanded from the landing zones to encompass as much land area as possible, with plot size 178 

limited by battery endurance of the PHX and the distance with which we could maintain un-179 

aided visual contact. We originally identified nine survey plots with appropriate launch and 180 

landing zones; however, one plot was later removed due to our inability to safely land the UAS 181 

at that site. Our resulting eight survey plots ranged in size from 46.29 ha to 119.82 ha and 182 

encompassed 30.69% of the CCESR property in total (Fig. 1).  183 

We pre-programmed the PHX to fly parallel transects at 121 m above ground level 184 

(AGL) over each survey plot using the laptop-based Sentera Ground Control program. We flew 185 

each plot at least twice per survey season, for a grand total of 35 survey flights, at various times 186 
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of day from morning until evening. Parallel transects were used for efficiency and to minimise 187 

wildlife disturbance (Mulero-Pázmány et al. 2017), and we did not observe any behavioral 188 

reactions during the course of our study. The onboard thermal sensor was automatically triggered 189 

by the PHX’s flight computer to achieve the pre-programmed image overlap. Thermal imagery 190 

was captured as still photos with 70 to 80% front overlap and 30% side overlap. Each image 191 

covered an average ground area of 3,948 m2 (approximately 60 x 70 m ground distance). Images 192 

were geo-referenced from the PHX’s GPS system and included data on altitude, speed, and bank 193 

angle of the UAS at the time of image capture. Imagery was saved on a mini SD card onboard 194 

the UAS, and was transferred post flight to an external hard drive and cloud-based storage 195 

system for post-processing.  196 

 197 

UAS data analysis 198 

We removed any imagery that was captured with UAS bank angles (amount of side-to-side roll) 199 

of >10° because imagery captured at greater angles of bank (e.g., during turn-arounds when the 200 

UAS was realigning to start new transects) would show inconsistent ground areas depending on 201 

bank angle, and would likely include space outside of our defined survey plots. We considered 202 

any bank angles of <10° to be products of ordinary wind turbulence during flight, based on 203 

observing the flight characteristics of the PHX and the distribution of bank angles in our data. 204 

We subsampled our thermal imagery for each plot by randomly selecting starting images and 205 

successively keeping any image with a centroid that was ≥ 80 m apart from any previously 206 

retained image’s centroid, using program R. This process yielded a subsample of thermal 207 

imagery with a ground distance of 10 m to 24 m between the edges of thermal images to be 208 

analysed. This ensured that we did not analyse overlapping imagery, potentially recounting 209 



10 
 

individual deer, and reduced the workload of reviewing the ~ 22,600 total thermal images 210 

collected.  211 

We manually reviewed the subsampled imagery from each plot and recorded counts of 212 

deer observations that we classified as either ‘certain’ or ‘potential’ detections. Certain 213 

detections were recorded when we had no doubt that a deer was in the image based on the shape, 214 

size, and relative brightness of the thermal heat signature. Potential detections were less certain 215 

detections that may have only met some, but not all of our shape, size, and brightness search 216 

criteria. Deer were distinguished from other wildlife by relative size and shape, as they were the 217 

only animal of their size present (e.g., bears were in dens, and wolves are rarely found in the 218 

study area). Coyotes, which were present in the study area, could potentially be misidentified as 219 

deer but are generally smaller and less common than deer. Detection of deer fawns was not a 220 

factor since UAS surveys were flown prior to parturition, and young from the previous year 221 

would have been of sufficient size to meet the criteria used to detect adult deer. Prior to the start 222 

of the study, we recorded thermal imagery from a captive deer farm with a known number of 223 

deer. We used the imagery from the deer farm for training observers prior to reviewing field 224 

data. Imagery of the captive deer was taken with the same FLIR sensor at varying altitudes, 225 

angles, and amounts of vegetative cover to provide examples of how deer might appear in 226 

thermal imagery.  227 

 228 

UAS deer density modeling 229 

We modeled deer counts (i.e., the number of deer observed in a thermal image) using the 230 

glmmTMB package (Brooks et al. 2017) in program R because it allowed for the inclusion of 231 

zero-inflated models and random effects. This approach also allows for different model 232 
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structures in the zero inflation and conditional components. Assumptions associated with zero-233 

inflated distributions are similar to general abundance modeling and include; 1) a closed 234 

population, 2) independent individuals with equal availability for capture, and 3) applying the 235 

correct distribution given the presence of overdispersion in the data (Wenger and Freeman 2008). 236 

We believed that these assumptions were met relatively well. Although deer hunting occurs 237 

outside of the property boundaries, CCESR is closed to most public hunting, which is a leading 238 

cause of adult and fawn mortality (Brinkman et al. 2004). Wolves were not likely in the study 239 

area, and coyotes generally prey on fawns (Grovenburg et al. 2011), which would not have 240 

greatly impacted population demographics during our late winter to early spring study period. 241 

Furthermore, Rhoads et al. (2010) reported that female deer occupied an average seasonally-242 

dependent home range of 21.2 ha for the 50% utilization distribution in an exurban population, 243 

which is a smaller area than our smallest UAS plot of 46.29 ha. Sub-sampling thermal imagery 244 

ensured independence among individuals by removing the potential to count the same deer more 245 

than once. Individual deer were relatively equally available to be detected using thermal imaging 246 

technology, and there was minimal conifer cover in the study area which could otherwise 247 

decrease detection probability (Dunn et al. 2002). We tested for overdispersion in the data, and 248 

appropriately applied zero-inflated negative-binomial models to account for the high number of 249 

zeros present in our data.  250 

We included in our models the variables of sky cover (0 = clear sky, 1 = overcast sky) 251 

and the proportions of habitat cover type as possible fixed effects; a maximum of one cover type 252 

proportion was included per model component (i.e., each of the two component models could 253 

have at most sky cover and one land-cover proportion as a fixed effect). We used sky cover 254 

instead of ambient temperature because sky cover was previously shown to improve models of 255 
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moose (Alces alces) detection over ambient temperature in forested habitats (McMahon et al. 256 

2021). Ground area (i.e., the spatial area observed within each thermal picture) was added as an 257 

offset to the conditional model based on our a priori reasoning that a greater area observed would 258 

result in a greater probability of deer detection. Survey flight ID and survey year (0 = 2018, 259 

1=2019) were included as crossed random intercepts to account for variation among survey 260 

flights and years.  261 

We determined the proportion of cover types within each image by clipping land cover 262 

data (MN Land Cover Classification, 2013) with a 35-m buffer around the centroid of each 263 

thermal image using ArcMap 10.5.1 (Environmental Systems Research Institute, Inc., Redlands, 264 

CA, USA). The radius of 35 m was chosen so that the buffer area around each image centroid 265 

equaled the mean ground area captured in the thermal imagery. We calculated the ground area of 266 

the thermal imagery for each image from flight altitude data using the Pythagorean Theorem and 267 

then averaged across all images. Proportions of each land-cover class (developed, conifer forest, 268 

deciduous forest, forested wetland, emergent wetland, grassland, agriculture, and open water 269 

[i.e., snow-covered ice]) were considered individually and in meaningful groups: forested upland 270 

(conifer + deciduous), open upland (agriculture + grassland), wetland (forested wetland + 271 

emergent wetland), non-wetland open area (grassland + agriculture + developed + open water), 272 

and no cover (emergent wetlands + grass + water + agricultural + developed). The composite 273 

variables were chosen based on the type of resources they might provide in winter (e.g., food, 274 

cover) and whether a given vegetation type would likely be tall or dense enough to obscure a 275 

deer from aerial thermal detection.  276 

Our deer detection data were saturated with ‘zero’ values so we implemented zero-277 

inflated negative binomial and Poisson hurdle models in the glmmTMB package (Wenger and 278 
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Freeman 2008; Brooks et al. 2017). We modeled deer numbers separately for high (potential + 279 

certain deer detection counts) and low (certain deer detection counts) counts, using the same 280 

modeling approach for each set of counts. We ran all possible combinations of covariates and 281 

random effects in the conditional and binomial models for high and low deer counts. Candidate 282 

models were compared using Akaike’s Information Criterion (AIC).  283 

To predict the deer population size across the entirety of the CCESR property using our 284 

top-supported models of deer abundance (based on high and low count data), we created a virtual 285 

grid in Program R that covered the entire area. Each cell of the grid was 3,948 m² (62.83 m x 286 

62.83 m), which equaled the mean ground area captured in the individual thermal images. We 287 

calculated the proportion of each land-cover type and composite cover-type variable within every 288 

grid cell using the land-cover data set and binning scheme described above. To generate a point 289 

estimate of the deer population size, we used the predict function in program R to estimate the 290 

probability of at least one deer being present (i.e., 1-P(structural zero)) and the expected mean of 291 

the conditional model for each grid cell (we assumed overcast sky conditions and random effects 292 

set to 0). The product of these two vectors (i.e., the expected number of deer per cell) was 293 

summed to provide an estimate of the deer population within the CCESR property.  294 

To quantify uncertainty in our point estimate, we needed to account for uncertainty in our 295 

parameter estimates as well as stochasticity in the system. We first generated 10,000 sets of 296 

parameter values from a multivariate normal distribution with a mean vector set to the fitted 297 

coefficient values and a variance-covariance matrix extracted from the fitted model. These 298 

bootstrapped parameter values were then used to calculate expected probability of structural 299 

zeros and the conditional mean for each cell; random effects, if present in a given model, were 300 

generated from a normal distribution with mean = 0 and standard deviation extracted from the 301 
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bootstrapped model parameters. We used these values to simulate our model for each grid cell by 302 

generating a sample from both the binomial and the conditional (either negative binomial or 303 

truncated Poisson) distributions and then calculating their product to yield a simulated number of 304 

deer within a given cell. These simulated deer numbers were summed across all cells to provide 305 

a simulated population estimate. This was repeated for each of the 10,000 sets of parameter 306 

values.    307 

 308 

Pellet-group count surveys 309 

We arranged pellet-group survey transects within the established UAS survey plots using a 310 

stratified random approach. We clipped land-cover data (MN Land Cover Classification, 2013) 311 

by the boundaries of the eight UAS survey plots and randomly inserted ~ 20 survey points 312 

proportionately with the availability of each cover type within the plot, using ArcMap. Our 313 

habitat cover types for conducting pellet-group counts included deciduous forest, forested 314 

wetland, emergent wetland, grass, and row crops. Transects were planned prior to fieldwork by 315 

using our stratified random points as starting locations and laying out a 100-m line in a direction 316 

from the starting point that would allow the surveyors to remain in the same habitat cover type 317 

for the entirety of the transect. Adjustments were made in the field as required to remain within 318 

the same habitat cover type.  319 

Pellet-group counts were conducted during the months of April and May (2018 and 320 

2019). We surveyed 133 transects in 2018 and resurveyed 120 of the same transects during 2019. 321 

Thirteen of the 2018 transects were not available for resurveying in 2019 due to prescribed 322 

burning on the CCESR property. Deer droppings were considered a pellet-group if there were at 323 

least 4 pellets of similar size, shape, and color within close proximity (pellets within 30 cm of 324 
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each other). Pellet-groups were only counted if ≥50% of the pellet-group was within 1 m of the 325 

transect centerline, and they were determined to have been deposited after leaf-off the previous 326 

fall. Deciduous leaf litter falling between survey periods (2018 and 2019) eliminated the need to 327 

age or clear away pellet-groups, as only pellet-groups that had been deposited from fall to spring 328 

would be visible above the leaf litter. Where leaf litter was not present (e.g., open habitat types), 329 

we examined pellet-groups and determined deposition timing based on the presence of weather 330 

exposure, moss, and insect damage (Gable et al. 2017). Pellet-groups deposited post fall leaf-off 331 

would not likely show any such damage from exposure.  332 

 333 

Pellet-group count data analysis and density modeling 334 

We estimated deer density from pellet count data in two ways. In the first, we used a simple 335 

equation (Gable et al. 2017):  336 

Deer density (deer/km²) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘𝑝𝑝2).  337 

We considered the pellet deposition rate to be 25 pellet-groups/deer/day based on pellet count 338 

surveys from a study near International Falls, MN (Gable et al. 2017). This value is based on the 339 

mean values for deposition rate from two other studies; Rogers (1987) used a deposition rate of 340 

34 and Patterson et al. (2002) used 16. We also calculated a low estimate using the value of 34 341 

pellet-groups/deer/day and a high estimate using 16 pellet-groups/deer/day. Our pellet-group 342 

deposition period (time between mean leaf-off date and mean survey date) was 192 days for 343 

2017–2018 and 209 days for 2018–2019. Density estimates were derived for forested (deciduous 344 

+ forested wetland) and non-forested (emergent wetland + grass + row crops) habitat cover types 345 

by pooling count data from specific cover types for calculation, and averaging across survey 346 

years. Point estimates of deer density were predicted across CCESR by applying density 347 
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estimates for forested and non-forested land cover to the proportion of forested and non-forested 348 

land cover of each grid cell in the virtual grid system described above in the UAS Deer Density 349 

Modeling section. 350 

We also took a second approach, in which we fit a Poisson hurdle model to the number of 351 

pellet groups found per transect. We used the same potential covariates, random effects, and 352 

parametric bootstrapping approach that we used for the UAS models; we divided the total area of 353 

each land-cover type in the landscape into 200-m2 transect units (i.e., equal in area to our sample 354 

transects). The result of predicting this model across each transect unit in the landscape was a 355 

“predicted number of pellets,” that we converted to “predicted number of deer” by assuming a 356 

192-day deposition period and the same high, low, and average pellet deposition rates used in the 357 

above equation. 358 

 359 

Results 360 

UAS-based deer density 361 

We conducted either two or three replicate surveys over our eight UAS survey plots at CCESR 362 

during winter and spring of both 2018 and 2019, totaling 35 thermal UAS flights with analysable 363 

data. Our thermal surveys required a total of 24.7 hours of flight time with the PHX. We 364 

captured a total of 22,626 thermal images and analysed a subsample of 3,757 non-overlapping 365 

images. Of these images, 96.6% did not contain any potential deer detections. We classified 48 366 

thermal images as containing certain deer detections (Fig. 2A) and an additional 95 with 367 

potential deer detections (Fig. 2B). Images with deer detections ranged in count from 1 to 9 368 

individuals and we detected a total of 96 certain deer and an additional 135 potential deer within 369 

all survey images (Fig. 3). Our top performing model for high (i.e., certain + potential) deer 370 
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detection was a zero-inflated negative binomial model that included the variables of sky cover (𝛽𝛽 371 

= 3.14, SE = 0.45) and the proportion of wetland habitat cover (𝛽𝛽 = 0.66, SE = 0.21) in the 372 

conditional formula. The zero-inflated formula contained sky cover (𝛽𝛽 = 5.70, SE = 1.67) and the 373 

proportion of open upland habitat cover (𝛽𝛽 = 2.43, SE = 1.22; Table 1). Our top performing 374 

model for low (i.e., certain) deer detection was a truncated Poisson model that included sky 375 

cover (𝛽𝛽 = 0.90, SE = 0.43), the proportion of wetland habitat cover (𝛽𝛽 = 1.26, SE = 0.57), and a 376 

random effect for survey flight ID in the conditional formula, with the proportions of non-377 

wetland open habitat cover (𝛽𝛽 = 3.46, SE = 1.26) in the zero-inflated formula (Table 1). 378 

Our top detection models predicted mean point estimates for deer density of 12.38 and 379 

6.18 deer/km2 for the high and low detection estimates, respectively. Point abundance estimates 380 

were 273.81 deer and 136.68 deer on the CCESR property (22.12 km2, Fig. 4, Table 2). Our 381 

bootstrapped estimates of deer density had a mean estimate of 13.77 deer/km2 for the high 382 

detection model, and a mean of 9.40 deer for the low detection model. These density estimates 383 

equated to a mean of 304.55 deer on the CCESR property for the high-detection model, and 384 

207.90 deer for the low-detection model (Fig. 4, Table 2).  385 

 386 

Pellet-group count deer density 387 

We surveyed 133 pellet-group count transects covering 26,600 m2 in 2018 and recorded 1,085 388 

pellet-groups. In 2019, we completed 120 transects equating to 24,000 m2 surveyed, recording 389 

766 pellet-groups.  390 

 Our predicted point estimates were 5.13, 6.98, and 10.91 deer/km2 based on high (34 391 

pellet groups/deer/day), mean (25 pellet groups/deer/day), and low (16 pellet groups/deer/day) 392 

deposition rates, respectively. Point estimates of abundance were 112.79 deer for high 393 
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deposition, 153.39 deer for mean deposition, and 239.67 deer for low deposition on the CCESR 394 

property (Fig. 4, Table 2). The bootstrapped predictions resulted in a mean of 5.15 deer/km2 for 395 

high deposition, a mean of 7.01 deer/km2 for mean deposition, and a mean of 10.95 deer/km2 for 396 

low deposition. The corresponding bootstrapped abundance estimates for CCESR from our 397 

bootstrapped prediction intervals were 113.25 deer, 154.02 deer, and 240.66 deer, respectively 398 

(Fig. 4, Table 2). 399 

Overall, UAS and pellet-count survey-based methods yielded comparable results with 400 

overlapping estimates for CCESR. In particular, the bootstrapped abundance estimates from 401 

certain UAS detections and mean deposition rate pellet-group surveys had high overlap with a 402 

difference of 52.59 more deer estimated by UAS methodology. High (certain + potential) UAS 403 

detection estimates and pellet-group survey estimates based on low deposition rates also had 404 

large overlap with 61.34 more deer estimated by UAS over pellet-group surveys.  405 

 406 

Discussion 407 

We successfully applied UAS and FLIR technology to survey a wild population of white-tailed 408 

deer and compared the efficacy of this approach to pellet-group count surveys, a widely-used 409 

conventional method for surveying ungulate populations. Both of these methodologies yielded 410 

similar results for density and abundance estimates, dependent on the pellet model assumptions, 411 

yet varied in levels of sampling effort, cost, and time. Despite increasing use of UAS in wildlife 412 

research (Jiménez López and Mulero-Pázmány 2019), many studies rely on expensive UAS and 413 

sensors and do not assess how well the approach compares with established methods. However, 414 

understanding the logistical, financial and practical hurdles of incorporating UAS is especially 415 

important for wildlife managers with limited resources. Our findings provide insights into the 416 
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process and utility of integrating UAS into monitoring ungulate populations in an efficient and 417 

temporally sensitive manner.  418 

The most notable difference between pellet-group counts and UAS surveys was the 419 

amount of time and effort required for each approach. Pellet counts took approximately 160 420 

hours (i.e., the time taken to count pellets and hike between survey transects) over both survey 421 

seasons, whereas the UAS surveys required only 24.7 hours of flight time in addition to 422 

approximately 30 minutes to one hour for set up and take down per launch site, totaling 17.5 to 423 

35 hours of non-flight field effort. Time spent driving between UAS launch sites was negligible. 424 

An additional 25 to 35 hours of effort was required for manual review of thermal imagery. The 425 

physical effort required for pellet count surveys was greater, requiring large amounts of off-trail 426 

hiking to reach survey sites, relative to the majority of UAS launch sites off of drivable roads and 427 

trails. Pellet-group counts were also temporally restricted to just prior to spring green up, after all 428 

snow cover was melted, for maximum detectability of pellet-groups by human observers. 429 

Conversely, UAS FLIR surveys could be carried out with far greater flexibility and would have 430 

been feasible anytime from late November through April, at the northern latitude of our study 431 

site, which corresponded to leaf-off conditions for deciduous trees. Forest-dwelling ungulates 432 

can be successfully detected using FLIR-equipped UAS in leafless conditions (Witczuk et al 433 

2018), and McMahon et al. (2021) found that increasing deciduous tree canopy hindered moose 434 

detection. The window of time for deciduous leaf-off conditions is relatively large at northern 435 

latitudes and is irrelevant for ungulate surveys in open grassland habitats. This wide temporal 436 

range allows researchers and managers greater operational flexibility for surveying ungulates, as 437 

compared to being seasonally restricted by pellet-group counts.  438 
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In addition to the temporal flexibility provided by the UAS approach, the added potential 439 

for frequently repeated surveys can provide managers with a means of rapidly conducting 440 

surveys to track how the space use and density of ungulate populations change through time. The 441 

ability to accurately, efficiently, and economically track ungulate population dynamics is 442 

paramount for management decisions because populations can change swiftly due to disease 443 

spread (Ditmer et al. 2020), interspecific competition (Weiskopf et al. 2019), changes in predator 444 

communities (Sivertsen et al. 2012), severe periods of weather (Bergman et al. 2015), and human 445 

land-use change (Fisher and Burton 2018). Barasona et al. (2014) utilised UAS imagery to model 446 

the environmental factors relating to the abundance of host species of tuberculosis in Spain (i.e., 447 

red deer [Cervus elaphus], fallow deer [Dama dama], and cattle [Bos taurus]). In Minnesota, 448 

chronic wasting disease is of special concern, where the movement of captive deer presents a risk 449 

for transmission to wild populations (Makau et al. 2020); applications of UAS similar to those 450 

used by Barasona et al. (2014) could provide important information regarding the presence and 451 

movement of wild deer in and around captive facilities. Moose populations have also 452 

experienced precipitous declines in northern Minnesota (DelGiudice 2018) and many traditional 453 

methods of population monitoring (e.g., capture and collaring) are currently restricted. McMahon 454 

et al. (2021) assessed the feasibility of monitoring this population’s reproductive success without 455 

the need for traditional approaches that require handling of moose calves by using a FLIR-456 

equipped UAS. The authors reported detecting GPS-collared adult moose with 85% success and 457 

non-collared moose calves with 79% success. They also were able to determine calf survival 458 

status after four separate suspected predation attempts, providing evidence that UAS can be used 459 

to monitor wild ungulate population demographics with less researcher-induced disturbance. 460 

However, McMahon et al. (2021) were only able to successfully gather data on individual wild 461 
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moose fit with GPS collars and their calves; demonstrating the drawback of spatial limitations of 462 

UAS that prevent their application for extensive, large-scale wildlife surveys. 463 

The application of UAS for surveying wild terrestrial species over spatially extensive 464 

areas has been largely impossible due to limitations of battery life, communication links, and 465 

federal regulations concerning commercial UAS use (Whitehead et al. 2014; Chrétien et al. 466 

2016; Beaver et al. 2020). For example, Vincent et al. (2015) describes the regulation prohibiting 467 

the use of UAS beyond visual line of sight, and how this limits the ability to survey mobile 468 

wildlife over spatially extensive areas. Fixed-wing models of UAS currently offer the greatest 469 

solution for expanding UAS range, given their superior flight endurance over multi-copters 470 

(Linchant et al. 2015); however, the costs associated with our fixed-wing UAS (~$14,000) and 471 

thermal sensor (~ $3,200) do present a significant monetary barrier. Thermal sensors can be 472 

mounted on a less expensive quadcopter UAS, but times aloft (far slower flight speeds) and 473 

survey range for each flight become limited, with the additional prospect of disturbing the study 474 

species and non-target species due to quadcopters’ much noisier operation (Scobie and 475 

Hugenholtz. 2016). We found another difficult tradeoff between multi-copter and fixed-wing 476 

UAS to be the extensive landing room required for fixed-wing operation. This is challenging in 477 

forested and semi-forested environments where sufficient landing zones are minimal. An 478 

additional major consideration for fixed-wing UAS operations is balancing UAS groundspeed 479 

(speed of UAS as measured in distance over the ground rather than through the air column) with 480 

FLIR sensor shutter speed. We recommend conducting test flights to ensure that images of the 481 

desired ground area can be captured with the required amount of image overlap prior to flying 482 

UAS for wildlife surveys. We experienced limitations of the amount of overlap we could obtain 483 

in our thermal images due to the relatively fast groundspeeds of the fixed-wing UAS; because 484 
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our thermal sensor’s shutter speed could not operate at speeds greater than 1.5 images/sec. We 485 

also experienced challenges with unreliable triggering of the thermal sensor during survey 486 

flights, which was addressed by debugging our novel pairing between FLIR and the PHX.  487 

Accurately identifying deer from UAS-gathered thermal imagery was a challenge for 488 

estimating population abundance at CCESR. We collaborated with computer engineers to 489 

determine the feasibility of automating deer detection within our thermal imagery; however, this 490 

effort was unsuccessful due to the relatively low resolution of our imagery collected at flight 491 

altitudes of 121 m AGL. Automated detection algorithms are computationally complex (Chabot 492 

et al. 2018; Kellenberger et al. 2018), requiring either higher resolution sensors (which are 493 

substantially more expensive) or lower flight altitudes (which increase the risk of wildlife 494 

disturbance). These limitations may prevent wildlife managers and researchers from choosing to 495 

pursue automated detection, in favor of manual review (McMahon et al. 2021). However, 496 

manual review can be time consuming. Regardless of how detections are made, false positives 497 

and misidentification of species are prevalent issues in remote sensing applications (Brack et al. 498 

2018; Kays et al. 2018). Conducting UAS surveys when thermal contrast between animal targets 499 

and their background environment is maximised (i.e., during early morning hours or overcast sky 500 

conditions which limit the amount of solar radiation that the ground absorbs) helps mitigate these 501 

issues and allows for greater thermal detection of target animals (Franke et al. 2012; Kays et al. 502 

2018; Preston 2021). We modeled deer count data using both certain and potential detections as a 503 

sensitivity analysis to quantify how variability in detection influenced our population estimates. 504 

Including potential deer detections increased our mean population estimate, based on the 505 

bootstrapped prediction distribution, by 95 deer relative to the model only including certain 506 

detections (~46% increase). Potential deer detections may have included false positives (i.e., 507 
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non-deer objects misidentified as deer) which would result in a higher abundance estimate, yet 508 

classifying only certain deer detections could have also mistaken actual deer for ground objects. 509 

As a post-hoc analysis we re-assessed 50% of the images that we initially considered to contain 510 

potential deer detections by examining the overlapping thermal imagery to quantify potential 511 

false negatives and positives. Our more thorough examination of each potential detection 512 

resulted in a 16% increase in certain detections and an 11% decrease in uncertain detections. 513 

This would result in a smaller difference between our certain and potential UAS deer estimates. 514 

While the additional effort would provide slightly more accurate population estimates, the 515 

approach is time consuming and may simply be unfeasible when considering larger areal 516 

coverage or more frequent flights. However, if researchers are able to overcome the previously 517 

mentioned hurdles to implementing accurate automated detection algorithms, the need to classify 518 

certainty and conduct the associated sensitivity analyses could be avoided. 519 

 Our estimates of deer abundance ended up being very similar despite the substantially 520 

different methodological approaches. This was especially true when comparing the prediction 521 

intervals for the pellet-group count model assuming 25 pellets/deer/day to the UAS model with 522 

certain deer only, and the pellet-group count model assuming a deposition rate of 16 523 

pellets/day/deer to the more liberal certain + potential UAS model. Our findings highlight the 524 

sensitivity to the pellet deposition rate assumption previously described by Gable et al. (2017), 525 

and suggest that the highest deposition rate (34 pellets/deer/day) may be overestimated for our 526 

study area. Although the UAS models do not require quantifying a pellet deposition rate, a 527 

difficult value to validate, properly incorporating all aspects of uncertainty into our prediction 528 

intervals from the model structures used here was analytically complex. However, as the red-529 

dashed lines in Figure 4 indicate, the simple mean point estimates from both pellet-group count 530 
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and UAS models were similar to the bootstrapped mean prediction interval estimates from each 531 

model, suggesting that simple prediction methods may be sufficient if monitoring changes using 532 

an index of abundance is adequate (e.g., tracking monthly changes to density). Finally, while the 533 

upper tails of the distributions in our UAS model prediction intervals were extremely long, 534 

uncertainty could be reduced with more frequent surveys, surveying a greater extent of the study 535 

area, or any number of actions that reduced uncertainty in the detection process (e.g., flying 536 

lower and/or slower). 537 

Technological advances, along with new tools and methodologies are increasingly 538 

available for wildlife managers, yet few studies consider all of the practical aspects of their field 539 

use or how they compare with established methods. Pellet-group counts and other ground-based 540 

methodologies are relatively affordable, well-understood and documented in the literature, and 541 

require less training than novel technological approaches. However, following an initial financial 542 

investment and training period, UAS allows for rapid survey capabilities over areas of rough 543 

terrain with few restrictions on time and available human effort that control many other methods. 544 

Continued advancement and reduction of costs for UAS, FLIR, and automated image analysis 545 

technology will likely continue to expand the applications of UAS in wildlife population surveys, 546 

making UAS a more readily applicable tool for wildlife managers to include in their toolbox. 547 

Tools that can improve the frequency of data collection and accuracy of population monitoring 548 

will be even more essential in the coming decades where wildlife must adapt to numerous 549 

environmental changes.  550 
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 749 

Figures and tables 750 

Figure 1: Cedar Creek Ecosystem Science Reserve (CCESR) study area, Minnesota, USA. 751 

Unmanned aerial system (UAS) survey plots are distinguished by the teal, numbered boundaries. 752 

Plot 8 was omitted from our study because of our inability to safely land the UAS at that site. 753 

 754 

Figure 2: Thermal imagery of certain white-tailed deer (Odocoileus virginianus) detections (A) 755 

and potential deer detections (B) collected at Cedar Creek Ecosystem Science Reserve, 756 
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Minnesota, USA during UAS surveys from March to April of 2018 and from January to March 757 

of 2019. We distinguished between certain and potential deer detections by shape, brightness, 758 

and size of thermal signatures. Figure 2A shows clear thermal signatures of deer based on these 759 

factors, while figure 2B contains less certainty based on shape. Such signatures were still 760 

counted as potential deer because shape can vary greatly in thermal imagery (e.g., when deer are 761 

bedded down versus standing/walking). 762 

 763 

Figure 3: Histogram showing the number of UAS images with 1–9 certain or potential white-764 

tailed deer (Odocoileus virginianus) detections from thermal imagery during unmanned aerial 765 

system surveys at the Cedar Creek Ecosystem Science Reserve, Minnesota, USA from March to 766 

April of 2018 and from January to March of 2019. Overall, deer counts per image ranged from 1 767 

to 9 deer, with 3,631 images containing no detection. We distinguished between certain and 768 

potential deer detections by shape, brightness, and size of thermal signatures. 769 

 770 

Figure 4: Boxplots of the bootstrapped predictions of the number of estimated deer in the Cedar 771 

Creek Ecosystem Science Reserve, Minnesota, USA based on pellet-group count models 772 

assuming high, mean, and low rates of pellet deposition (34, 25 & 16 pellets per deer per day, 773 

respectively) and UAS models using counts of certain and certain plus potential white-tailed deer 774 

in thermal images. Surveys were conducted from March to May of 2018 and from January to 775 

May of 2019. Orange points represent the means of the bootstrapped predictions. Red-dashed 776 

lines on each pellet-based model show the model-free point estimates. The red dashed-lines over 777 

the UAS model estimates represent mean point estimates from the top model for certain and 778 

certain plus potential deer detections. 779 
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 817 

Table 1: The highest-ranking models for estimating deer abundance based on detection data 818 

from unmanned aerial system surveys from March to April of 2018 and from January to March 819 

of 2019 at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. We estimated deer 820 

abundance based on high (certain + potential) deer detections (Response Type = High) and low 821 

(certain) deer detections (Response Type = Low). We considered various distributions (Family) 822 

for modeling deer abundance, but show only the top performing distributions for each response 823 

type. All models included an offset for ground area captured in the analysed thermal image. 824 

Model ranking (Rank) is based on ΔAIC. 825 

Formula Family loglik ΔAIC Rank 

Response Type = High 

Conditional Formula = ~Sky Cover + Proportion 
Wetland*, Zero-Inflated Formula = ~Sky Cover + 
Proportion Open Upland** 

Zero-
inflated 

Negative 
Binomial -694.9 0 1 

Conditional Formula = ~Sky Cover + Proportion Wetland 
+ Random Effect for Survey Flight ID, 
Zero-Inflated Formula = ~Sky Cover + Proportion Open 
Upland 

Zero-
inflated 

Negative 
Binomial -694.7 1.7 2 

Conditional Formula = ~Sky Cover + Proportion Wetland 
+ Random Effect for Survey Year, 
Zero-Inflated Formula = ~Sky Cover + Proportion Open 
Upland 

Zero-
inflated 

Negative 
Binomial -694.9 2 3 

Response Type = Low 

Conditional Formula = ~ Sky Cover + Proportion Wetland 
+ Random Effect for Survey Flight ID, 
Zero-Inflated Formula = ~ Proportion Non-Wetland 
Open*** 

Truncated 
Poisson -306.9 0 1 
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Conditional Formula = ~ Sky Cover + Proportion 
Wetland, Zero-Inflated Formula = ~ Proportion Non-
Wetland Open 

Truncated 
Poisson -308.7 1.6 2 

Conditional Formula = ~ Sky Cover + Proportion Conifer 
+ Proportion Deciduous, 
Zero-Inflated Formula = ~ Proportion Non-Wetland Open 

Truncated 
Poisson -309.2 2.6 3 

*Wetland habitat is defined as forested wetland + emergent wetland habitats 826 

**Open upland habitat is defined as row crops (agricultural) + grass habitats 827 

***Non-wetland open habitat is defined as row crops (agricultural) + grass + developed + open 828 

water habitats 829 

 830 

Table 2: White-tailed deer density and abundance estimates from unmanned aerial system 831 

(UAS) surveys and pellet-group counts from March to May of 2018 and from January to May of 832 

2019 at the Cedar Creek Ecosystem Science Reserve (CCESR), Minnesota, USA. UAS high 833 

estimates are based on certain + potential thermal detections, and UAS low detections are based 834 

on only certain detections. Pellet estimates are from pellet-group surveys with low estimates 835 

corresponding to 34 pellet groups per deer per day, mean estimates to 25 pellet groups per deer 836 

per day, and high estimates to 16 pellet groups per deer per day. Point estimates do not include 837 

estimates of error. 95% prediction intervals were calculated through bootstrapped estimates. 838 

 

CCESR 
Density 

(deer/km2) 

95% 
Prediction 
Interval 

(deer/km2) 

CCESR 
(total deer) 

95% Prediction 
Interval  

(total deer) 

UAS High Point 
Estimate  12.38 - 273.81 - 

UAS Low Point 
Estimate  6.18 - 136.68 - 
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UAS High 
Bootstrapped 

Estimate  13.77 6.64-24.35 304.55 146.88-538.62 
UAS Low 

Bootstrapped 
Estimate  9.40 4.32-17.84 207.90 95.56-394.62 

Pellet Low Point 
Estimate 5.13 - 112.79 - 

Pellet Mean Point 
Estimate 6.98 - 153.39 - 

Pellet High Point 
Estimate 10.91 - 239.67 - 

Pellet Low 
Bootstrapped 

Estimate  5.15 3.04-8.30 113.25 66.82-182.48 
Pellet Mean 

Bootstrapped 
Estimate  7.01 4.14-11.29 154.02 90.88-248.18 

Pellet High 
Bootstrapped 

Estimate  10.95 6.46-17.65 240.66 142.00-387.78 
 839 

 840 


