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A B S T R A C T

In the growing area of wastewater reuse, the performance of reverse osmosis (RO) is limited by poor membrane
selectivity towards nitrosamines and other low-molecular weight, neutral contaminants. This study aimed to
increase RO membrane rejection of N-nitrosodimethylamine (NDMA), a carcinogenic nitrosamine that is pro-
duced during chlorination and chloramination of secondary wastewater effluent. Toward this goal, we modified
commercial polyamide RO membranes with graphene oxide (GO) nanosheets, and demonstrated that GO
functionalization can decrease the NDMA permeability coefficient by 31%, while only decreasing water per-
meability by 13%. The improved selectivity is likely due to additional steric exclusion derived from the GO
nanosheet coating. Moreover, membrane characterization indicated that the GO modification does not change
the hydrophilicity or roughness of the interface. The latter interfacial characteristics, combined with the well-
established biocidal properties of graphenic nanomaterials, render GO functionalization a promising strategy for
the development of highly selective membranes for wastewater reclamation.

1. Introduction

Water scarcity is a central problem of our time. Millions of people
are affected by difficult or intermittent access to drinking water, a
problem that will be aggravated by population growth, industrializa-
tion, urbanization and climate change [1]. With less than 1% of
available water supply in the form of drinking water, there is a clear
need for technologies capable of tapping unconventional water sources
(e.g., brackish water, seawater, and wastewater) [2] to augment the
water inventory beyond what is available from the hydrological cycle.
Given their relatively low energy requirements and high pollutant re-
moval, membrane-based processes such as reverse osmosis (RO) hold
significant promise in augmenting our water supply through seawater
desalination and advanced wastewater treatment [2].

The inception of the thin film composite (TFC) membrane con-
tributed significantly to the decrease in the energy consumption of
desalination and wastewater reclamation by RO [1,2]. TFC membranes
[3] display high contaminant rejection (> 99% for ionic species, as well
as a wide variety of micropollutants with molecular weight ≥150 Da
[2]), and high water permeability (2–5 Lm−2 h−1 bar−1 [2]) owing to
a thin (∼200–300 nm [4]) polyamide selective layer. Conventional
polyamide TFC membranes are fabricated by interfacial polymerization

(IP) of aromatic amines and acyl chlorides, typically m-phenylene dia-
mine in aqueous solution and trimesoyl chloride dissolved in organic,
apolar solvents [1,3,5,6]. Because IP is a stochastic, self-limiting pro-
cess [5,6], the resulting active layer is a highly crosslinked glassy
polymer whose chemical composition and morphology are difficult to
control, and whose selectivity has proven challenging to improve.
Consequently, state-of-the-art RO membranes are permeable to small,
hydrophilic neutral solutes (SNSs) (i.e., those with a molecular diameter
similar to that of a water molecule, ∼0.3 nm), many of which are toxic
[2,7–9]. Examples of SNSs which show low rejection include boron,
arsenic and a host of organic disinfection byproducts (DBPs) [2,10].
The environmental and health impacts of these species range from
damage in crops to cancer and developmental/reproductive effects in
humans [11].

Among SNSs, the National Research Council identified N-ni-
trosodimethylamine (NDMA) (a byproduct of chloramination of sec-
ondary wastewater effluent [12,13]) as significantly concerning due to
its being a potent carcinogen [14]. Different countries and regions have
adopted recommendations about the presence of NDMA in drinking
water: California has adopted a notification goal of 10 ng L−1 for NDMA
and other nitrosamines [15,16], while Germany and the Netherlands
have adopted guide values of 10 and 12 ng L−1, respectively, for NDMA
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[16]. Concerning wastewater effluent, the regulatory level for NDMA in
Ontario is 200 ng L−1 [16]. Owing to its small molecular radius
(0.248 nm [9]), hydrophilicity (logKow, NDMA=−0.57, where Kow is
the 1-octanol/water partition coefficient [17]), and uncharged state at
pH 6–8 [15], NDMA is sparsely removed by conventional membranes,
with observed rejection coefficients in the 5–80% range for brackish
water RO membranes [15]. Such rejection results in low RO permeate
quality when the feed is impacted with wastewater disinfected with
chloramines [18]. Removal of NDMA thus requires an expensive ad-
vanced oxidation process (AOP) downstream of the RO stage to degrade
NDMA to less toxic compounds [2,14]. Development of a high rejection
membrane would therefore reduce the capital and operating costs of
advanced reuse processes, in addition to producing safer reclaimed
water.

Previous research has found a strong correlation between the
minimum projected area of NDMA and other neutral solutes, and their
rejection by RO membranes [4], suggesting that steric hindrance de-
rived from sub-nanometer voids in the selective layer influences con-
taminant transport and selectivity. Accordingly, efforts to improve the
rejection of NDMA and other SNSs (e.g., boric acid) have focused on
reducing the void-volume fraction through heat treatment [15,19], or
via surface modification of the polyamide layer with aliphatic alkyla-
mines [20] or monomers such as glycidyl methacrylate [7], that reduce
void-volume size and disrupt solute-solvent hydrogen bonding
[7,20,21]. However, the chemical moieties used in these modifications
are hydrophobic [7,20], resulting in a polyamide surface with possible
high organic and biological fouling propensity. Membrane surface
modification with biocidal nanomaterials such as graphene oxide (GO)
has proven effective in mitigating biofouling [22–24]. If, in addition,
GO surface coatings could improve NDMA rejection, a valuable synergy
for wastewater reuse membranes would result. However, to-date, the
effect of nanomaterial surface coatings on the rejection of SNSs such as
NDMA by polyamide membranes has not been explored.

In this paper we investigate the impact of GO modification on the
rejection of NDMA in RO membrane filtration. We show that modifying
commercial RO membranes with a GO surface coating can improve the
rejection of NDMA by 6% (equivalent to a decrease in NDMA perme-
ability coefficient of 31%) and the water/NDMA permselectivity (ratio
of the permeability coefficients of water and NDMA) by 43%. The
higher rejection of NDMA by GO-modified membranes is attributed to
sealing of polyamide defects by GO nanosheets.

2. Materials and methods

2.1. Graphene oxide synthesis and characterization

Graphene oxide (GO) was prepared by chemical exfoliation of gra-
phite (Bay Carbon, SP-1, 325 mesh) following the modified Hummers
method [25]. A detailed description of the synthesis and material
characterization can be found in our previous publication [26]. GO
nanosheets were readily dispersible in ultrapure water (18.2MΩ cm,
Barnstead) and exhibited a mean lateral dimension (determined from
scanning electron micrographs) of ∼80 nm and thickness of ∼1 nm
(measured by tapping mode AFM), consistent with single-layer GO
nanosheets [27]. Raman spectroscopy confirmed the presence of the
graphite lattice in-phase vibration (G) band at ∼1590 cm−1 and the
disorder (D) band at ∼1350 cm−1 [28].

2.2. Surface modification with graphene oxide (GO)

Polyamide thin-film composite RO membranes (SW30HR, Dow
Water & Process Solutions) were provided as flat sheets and stored dry
until use. Given their high rejection of other SNSs (e.g., boric acid
[7,21]), seawater RO (SWRO) membranes such as SW30HR constitute a
suitable material platform with which to investigate DBP removal.
Before surface modification, membrane coupons were immersed in 25%

aqueous isopropanol for 30min, and then rinsed in ultrapure water for
1 h. To functionalize the membrane surface with GO, we adapted the
protocol developed by Perreault et al. [22], according to which na-
nosheets are tethered to polyamide via amine coupling chemistry [29]
using an ethylenediamine (ED, BioXtra, Sigma) linker. Briefly, car-
boxylic acid groups on the polyamide active layer are converted to
amine-reactive esters using EDC (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride, 98%, Sigma) and NHS (N-hydro-
xysuccinimide, 98%, Sigma), at concentrations of 4mM and 10mM,
respectively, in a 10mM MES buffer solution (MES monohydrate,
BioXtra, 99%, Sigma), pH 5.0, containing 0.5M NaCl. After 60min, the
membrane is washed with ultrapure water and contacted with a 10mM
ED solution in 10mM HEPES buffer (99.5%, Sigma), pH 7.5, containing
0.15mM NaCl for 30min; this step functionalizes the membrane sur-
face with primary amine groups through reaction of ED with the acti-
vated esters. To activate the GO suspension, 10 parts of 250 μgmL−1

GO suspension is combined with 2 parts 100mM MES buffer, which is
mixed with 1.75 parts 20mM EDC (in 10mM MES buffer) followed by
1.75 parts 50mM NHS (in 10mM MES buffer) to convert carboxylic
acid groups that decorate the GO nanosheet edges into amine-reactive
esters. The pH of EDC-NHS-activated GO dispersion is adjusted to 5.5,
and after 15min it is increased to 7.2 by the addition of NaOH drop-
wise. The ED-functionalized membrane is then exposed to the activated
GO dispersion for 60min, allowing reaction of the activated GO with
the primary amine groups present on the membrane surface. Finally,
the membrane is bath sonicated for 5min to remove adsorbed GO, and
stored at approximately 4 °C in ultrapure water until use. All membrane
modifications were performed at room temperature in an orbital shaker
at 30 rpm. Membrane coupons were mounted between a polypropylene
backing and a PTFE frame, leaving only the polyamide active layer
exposed to the modification solutions.

2.3. Characterization of membrane chemistry and interfacial properties

2.3.1. Conformal Raman mapping
Raman spectroscopy (Witec Alpha300R) was used to verify the

presence and characterize the spatial distribution of GO nanosheets on
the polyamide surface. Raman maps were determined over
20× 20 μm2 scan areas on desiccator-dried membranes at 0.5 μm re-
solution, measuring 4 spectra per square micron. To generate the GO
surface density maps, we computed the ratio of the areas under the D
band of GO and the polysulfone CeOeC stretching band (observed at
∼1150 cm−1 [22,30]) derived from the RO membrane support.

2.3.2. Scanning electron and atomic force microscopy
Membrane surface morphology was characterized by field emission

scanning electron microscopy (FESEM). The samples were sputter-
coated with 5 nm of iridium (Leica EM, ACE 600) to enable SEM ima-
ging (Hitachi SU8230). Membrane surface topography was character-
ized by tapping mode AFM in air using a MFP-3D-Bio AFM (Asylum
Research), with AC160TS-R3 probes (Asylum Research, nominal
k=26N/m). Surface images were collected at 0.5 Hz over
2.5×2.5 μm2 areas. Root-mean-square (RMS) roughness was calcu-
lated from five AFM scans of different specimens for each membrane
type.

2.3.3. Contact angle goniometry
Membrane surface hydrophobicity was characterized by the contact

angle of n-decane droplets suspended in ultrapure water. The captive
droplet technique allows investigation of membrane hydrophobicity in
aqueous environments and circumvents artifacts due to membrane
drying [31]. A goniometer (Ramé-Hart, Model 200) was used to de-
termine the contact angles of n-decane droplets (∼10 μL volume) in-
jected with a J-shaped needle into a fluid cell containing ultrapure
water. DROP Image software (Ramé-Hart) was used to measure the
contact angle of each droplet. For each membrane type, two replicate
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specimens were measured for a total of 12 n-decane droplets.

2.3.4. Streaming potential measurements
The zeta potential of the membrane surface was determined from

streaming potential measurements using an electrokinetic analyzer
(SurPASS, Anton-Paar). Two membrane coupons were affixed to the
sample holders of an adjustable gap cell with a gap size of 120 μm. The
streaming potential was measured in 1mM KCl from pH 10 to pH 4,
adjusted with aliquots of 0.05M HCl. The zeta potential was computed
from the measured streaming potential using the Smoluchowski-
Helmholtz equation [32]. For each membrane type, two separate
membrane specimens were characterized.

2.4. NDMA removal efficiency

2.4.1. Analytical techniques
Samples of feed and permeate solutions were analyzed by capillary

LC ESI+-MS/MS with a TSQ Vantage triple quadrupole (Thermo
Scientific) interfaced to a Dionex Ultimate 3000 rapid separation LC
(RSLC) high performance liquid chromatography (HPLC) system
(Thermo Scientific) to measure the relative amount of NDMA present in
filtered water samples. Chromatographic separation was achieved using
an Agilent Zorbax SB-C18 5 μm, 150mm×0.5mm column. Samples
were eluted at a flow rate of 15 μL/min at room temperature using
2mM ammonium acetate with 0.1% formic acid in water and methanol
with 0.1% formic acid as buffers. The column was run under isocratic
conditions at 10% methanol for 9min. NDMA elutes from the column at
4.35min and was monitored by the selected reaction monitoring (SRM)
transitions m/z=75.08→ 43.13 and 75.08→ 58.17. Quantitation was
based on m/z=43.13, while m/z=58.17 was used as a qualifier ion.
The instrument was operated with an electrospray ionization source
with a spray voltage of 3500 kV in positive ionization mode. Nitrogen
was used as the sheath and auxiliary gas (20 and 0.5 units, respec-
tively), and the ion transfer tube was set to 350 °C. Argon was used as
the collision gas, and set to 1.0 mTorr. For m/z=43.13, a collision
energy of 16 V was used, and for m/z=58.17 a collision energy of 12 V
was used. The S-Lens of the instrument was set to 40 V, and a declus-
tering voltage of 10 V was used. Quadrupole resolution was achieved at
0.7 (FWHM) for both Q1 and Q3. A sample chromatogram is given in
Fig. S1 of the Appendix. Prepared synthetic standards over the expected
concentration range were injected to create a standard curve. Sample
NDMA concentration was determined from the measured peak area
using the standard curve.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.seppur.2018.08.070.

2.4.2. Membrane filtration system
A laboratory-scale RO filtration apparatus was employed, consisting

of a crossflow cell (CF042D, Sterlitech) with a membrane active area of
42.1 cm2, high-pressure pump (HydraCell M-03S, Wanner Engineering),
19-L stainless steel feed reservoir and heat exchange coil (Sterlitech)
and chiller unit (6500 Series, PolyScience). The permeate flow rate was
recorded by either a digital flow meter (SLI, Sensirion) connected to a
computer, or by measuring the permeate volume as a function of time
(in the latter case, good agreement was found with data recorded by the
digital flow meter).

2.4.3. Characterization of NDMA rejection
Membranes were tested in ultrapure water supplemented with

NDMA at a concentration of 890 μg L−1 (dosed from a 1.35M NDMA
stock solution, prepared in water from neat NDMA (Supelco, Sigma
Aldrich)). This elevated feed concentration was chosen because it fa-
cilitates direct analysis by LC-MS/MS without the need for sample
concentration. Moreover, we carried out two additional experiments to
investigate the effect of feed concentration on rejection with control
membranes. Experiments at higher feed concentration (1125 μg L−1,
RNDMA=84.9%) and lower feed concentration (462 μg L−1,
RNDMA=82.2%) showed no apparent effect on NDMA removal, in
agreement with previous work [33]. All experiments were conducted at
a feed temperature of 22 °C and a crossflow velocity u=0.08m s−1.
Under these conditions, Re= udH/υ=363, where dH=4.38×10−3 m
is the hydraulic diameter of the crossflow channel and υ is the kine-
matic viscosity of water at 22 °C, equal to 9.57× 10−7 m2 s−1. The pH
of the feed solution was ∼5.8–6.2, conditions under which NDMA is
uncharged [15]. The permeate flux was first allowed to reach steady
state by compacting the membrane at 400 psi with an ultrapure water
feed. Following compaction, NDMA was dosed to the feed tank. After
allowing at least 2 h for the solute to attain adsorption equilibrium with
the membrane, 3 feed and 3 permeate samples were collected in 300 µL
glass vials and stored in the dark at approximately 4 °C until analysis by
LC-MS/MS was conducted.

The intrinsic water permeability (A) was determined by dividing the
permeate flux (Jw) by the transmembrane pressure difference (Δp).
NDMA separation was quantified by the rejection coefficient
RNDMA=1− Cp/Cf, where Cp and Cf are the bulk permeate and feed
NDMA concentrations. Reported values of RNDMA represent the average
of three measurements. The permeability coefficient of NDMA (B) was
computed from

⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛
⎝

− ⎞
⎠

B J R
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1 expw
wNDMA
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Fig. 1. Raman spectroscopy maps of (a) ethylenediamine (ED)-modified (SW30-ED) and (b) GO-functionalized (SW30-GO) polyamide membrane surfaces.
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where k is the mass transfer coefficient, calculated from the correlation
for the Sherwood number (Sh= kdH/D, where D=9.9×10−10 m2 s−1

is the aqueous diffusivity of NDMA [33]) under laminar flow in thin
rectangular channels without spacers [34],

=Sh ReScd L1.85( )H
0.33 (2)

where Sc= υ/D is the Schmidt number and L=9.2×10−2 m is the
length of the crossflow channel.

2.5. Statistical analysis

Homoscedastic (equal variance) unpaired t-tests were performed
using Microsoft Excel to determine the statistical significance of the
results. To evaluate the removal of NDMA by the different membrane
materials, we considered seven membrane specimens independently
functionalized with GO (hereinafter referred to as SW30-GO). In addi-
tion, we characterized NDMA rejection of six control membranes (de-
signated as SW30), and two membranes functionalized with ED (de-
signated SW30-ED). Error estimates in NDMA rejection coefficient are
given as the standard deviation of three different measurements.

3. Results and discussion

3.1. Membrane material characterization

3.1.1. Raman spectroscopy and electron microscopy
We assessed the extent of membrane surface functionalization with

GO by means of confocal Raman mapping. The results are presented in
Fig. 1. The Raman map corresponding to the SW30-GO membrane
(Fig. 1(b)) exhibits regions of high brightness (whose intensity is pro-
portional to the ratio of the D band in GO to the polysulfone band), thus
confirming successful functionalization with GO. The heterogeneity in
the coverage observed in Fig. 1(b) is likely due to the broad sheet size
distribution observed in the synthesized GO, with sheet lateral dimen-
sions varying by one order of magnitude [26]. Conversely, no GO sig-
natures are observed in the GO-free SW30-ED membrane (Fig. 1(a)).

Similarly, electron micrographs presented in Fig. 2 confirm the
presence of GO as a crumpled sheet-like nanomaterial overlaying the
polyamide (Fig. 2(b)), or as darker regions over the polyamide
(Fig. 2(d)); these morphological features are absent in the SW30 control

(Fig. 2(a) and (c)), which shows the well-known leaf-like structure of
polyamide [35]. The features noted in the micrographs of Fig. 2 are
consistent with those reported previously by others in similar systems
[22,23].

3.1.2. Interfacial properties
The effect of GO functionalization on surface roughness and mem-

brane wettability is explored in Figs. 3 and 4, respectively, using atomic
force microscopy (AFM) and contact angle goniometry. The AFM image
corresponding to SW30 (Fig. 3(a)) exhibits the familiar ridge-and-valley
structure of polyamide [5,36]. A seemingly different morphology is
exhibited by the SW30-GO specimen (Fig. 3(b)), with smoother do-
mains that are possibly due to GO nanosheets covering the rougher
features of polyamide. These differences, however, are not reflected in
the root-mean-squared roughness, which demonstrated similar values
for both types of membranes: 60.2 ± 9.7 nm for SW30 and
58.8 ± 7.3 nm for SW30-GO (p=0.82).

Fig. 4 presents results on the wettability of the membrane surfaces
by a hydrophobic organic liquid, characterized by the contact angle of
captive n-decane droplets in ultrapure water. With contact angles> 90°
(measured through the n-decane droplet), the results show that both
membrane interfaces were poorly wetted by n-decane. On closer in-
spection, we observe a slightly larger contact angle in SW30-GO (164.0°
compared to 161.2° for SW30, p=0.008), suggesting that GO surface
modification results in a somewhat more hydrophilic interface com-
pared to the control, a result that can be attributed to the hydrophilicity
of GO films [26]. The results in Figs. 3 and 4 therefore show that GO
functionalization does not render the membrane surface more hydro-
phobic nor does it increase surface roughness, both of which are de-
sirable features from the point of view of fouling control [37,38].

To elucidate the effect of GO functionalization on membrane
charge, we determined the ζ-potential of the membrane surfaces by
means of streaming potential measurements. The results are presented
in Fig. 5. Control (SW30) and ED-functionalized membranes (SW30-ED)
exhibited no discernible differences in charging behavior in the pH
4–10 range, the surface charge becoming more negative as pH in-
creases, due to deprotonation of carboxylic acid functional groups [39].
In contrast, a significant increase in surface charge was observed in
SW30-GO membrane specimens, with the zeta potential increasing (in
absolute value terms) by ∼25mV at circumneutral pH relative to the

Fig. 2. Scanning electron micrographs of (a, c) control (SW30) and (b, d) GO-functionalized (SW30-GO) polyamide membrane surfaces.
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control and ED-functionalized surfaces. We attribute the increase in
negative charge of the membrane surface to a higher surface density of
carboxylate functional groups derived from the GO nanosheets [40,41].
A similar increase in the negative charge of polyamide membranes after
GO modification has been reported by others [42,43]. These results
provide further confirmation of the successful functionalization of the
membrane surfaces with GO.

3.2. Effect of GO surface functionalization on NDMA rejection

Figs. 6 and 7 present the average water permeability coefficient
(Aav), average NDMA permeability coefficient (Bav), and average NDMA
rejection coefficient (RNDMA, av), obtained from six SW30 filtration ex-
periments and seven filtration experiments with independently func-
tionalized SW30-GO membrane samples. In addition, Fig. 7 presents the
average water/NDMA permselectivity, (A/B)av.

Fig. 3. Tapping mode AFM images of (a) control (SW30) and (b) GO-functionalized (SW30-GO) polyamide membrane surfaces.
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Fig. 6 demonstrates that GO surface modification improves NDMA
rejection (RNDMA, av) by 6.2%, increasing from 76.5% for SW30 to
82.7% for SW30-GO (p=0.068). The improved removal of NDMA is
similarly manifested by a decrease in Bav from 4.2 Lm−2 h−1 (LMH) for
SW30 to 2.9 LMH for SW30-GO (p=0.068). We further investigated
the role of the ED linker in NDMA removal: the NDMA rejection coef-
ficient of SW30-ED, 80.2%, showed that ethylenediamine plays a role in
NDMA rejection, though additional gains in nitrosamine removal are
due to the combined ED-GO surface modification. SW30-GO mem-
branes will thus be the focus of the discussion that follows.

Fig. 7 shows that improved rejection is observed at the expense of a
13% decrease in water permeability, with Aav decreasing from
1.2 LMH bar−1 for SW30 (a value consistent with that specified by the
manufacturer, i.e., 1.1 LMH bar−1) to 1.05 LMH bar−1 (SW30-GO)
(p= 0.086). The observed decrease in water permeability is due to the
additional hydraulic resistance derived from the GO layer, and reflects
the well-known tradeoff between water permeability and membrane
separation performance [2,15,44]. We note that the decrease in Aav is
smaller than that observed following heat treatment (20–35%) [15], a
strategy pursued by others to achieve high (92%) nitrosamine removal,
albeit with significant loss of water permeance [15]. Moreover, im-
proved NDMA rejection observed with GO functionalization results in
improved water/NDMA permselectivity, (A/B)av, which increases from
0.3 bar−1 to 0.43 bar−1 (p=0.12) following GO surface modification,
as shown in Fig. 7.

Figs. 8 and 9 present the results of the individual filtration experi-
ments from which the average quantities in Figs. 6 and 7 were com-
puted. We observe significant variability in membrane transport prop-
erties across SW30 and SW30-GO coupons, which is nonetheless within
the expected range specified by the manufacturer (± 15% [45]). Var-
iation in transport properties across specimens of the same membrane
type is a common feature of polyamide membrane materials [20,46].
For control membranes, the variability in transport properties and se-
lectivity is likely due to regions in SW30HR polyamide that possess
different chemical compositions. As observed by others [21], SW30HR
polyamide exhibits nitrogen-rich regions (comprising ∼8–10% N and
≤20% O), and nitrogen-poor regions (1–3% N and 24–33% O) in-
dicative of a proprietary surface coating that does not uniformly cover
polyamide [21,47–50].

For the six control (SW30) coupons investigated, A varies from
1 LMH bar−1 to 1.4 LMH bar−1. Within this range, NDMA rejection
decreases from 81% to 72% (Fig. 8); similarly, the NDMA permeability
coefficient (B) is shown to increase from 3.1 LMH to 5.3 LMH as A

increases (Fig. 9), i.e., the observed dependence of RNDMA and B on A is
consistent with the permeability-selectivity tradeoff. Similar variability
is observed across individual GO-modified membrane specimens; this
variation can be attributed to the chemically distinct regions of the
underlying polyamide layer, and is possibly compounded by a some-
what heterogeneous GO coating (observe the GO-lean regions in the
Raman maps shown in Fig. 1). Accordingly, NDMA removal is observed
to decrease from 93% to 75% (equivalent to an increase in B from 1.0
LMH to 4.5 LMH) as the water permeability coefficient increases from
0.8 to 1.3 LMH bar−1.

Contaminant removal by reverse osmosis is derived from multiple
physical and chemical properties of the membranes: surface chemistry
(i.e., hydrophobicity or hydrophilicity) affects contaminant partitioning
into the membrane [7,21,51]; further, membrane surface charge
strongly influences rejection of charged species through Donnan ex-
clusion [52]; finally, nanoscale voids in polyamide modulate water and
contaminant transport across the polymer film [4,9]. Membrane hy-
drophobicity and charge do not explain the increase of NDMA rejection
observed above with SW30-GO membranes, given that NDMA is un-
charged at circumneutral pH [15], rendering Donnan exclusion in-
operable. Moreover, SW30 and SW30-GO specimens showed similar
wetting by n-decane (Fig. 4), suggesting that the GO coating does not
noticeably affect hydrophilicity and NDMA partitioning. On the other
hand, the observation that the highest NDMA rejection is exhibited by
membrane specimens with relatively low A (Fig. 8) suggests that the
improved NDMA removal observed in GO-functionalized membranes
may be due to obstruction of nanoscale defects in polyamide by the ED-
mediated tethering of GO nanosheets. Defects in polyamide, present as
free-volume cavities ∼0.27 nm in radius [4], are blocked by the
covalently bonded layer of GO nanosheets, which are themselves im-
permeable to water and solutes [53,54], leading to improved removal
of NDMA by steric exclusion.

4. Concluding remarks

Development of membranes demonstrating high rejection of SNSs
remains a long-standing challenge in membrane separations. Focusing
on NDMA, a carcinogenic SNS of significant concern in wastewater
reclamation, we have shown that surface functionalization of com-
mercial polyamide membranes with GO nanosheets – a building block
of membrane biocidal coatings – results in improved NDMA rejection.
We draw the following conclusions from our study:

• Compared to control membranes, GO-functionalized (SW30-GO)
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membranes improve NDMA rejection by 6.2%, increasing from
76.5% to 82.7%. We ascribe the improvement in NDMA removal to
sealing of defects in polyamide by the covalently bonded GO layer.

• The improved NDMA rejection occurs at the expense of a 13% de-
crease in water permeability coefficient, due to the higher hydraulic
resistance caused by the GO layer. Nevertheless, the loss of water
permeance appears to be moderate, given that an increase in the
water/NDMA permselectivity from 0.3 bar−1 to 0.43 bar−1 is also
observed.

• In contrast with other surface modification strategies, membrane
functionalization with GO does not negatively alter the interfacial
properties of the polyamide (notably hydrophobicity and rough-
ness), making this a promising strategy for the modification of
membranes for wastewater reclamation.
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Figure S1. Chromatogram of a synthetic standard mixture (5 pmol injected into column).  The top image 
corresponds to the quantitative channel, while the bottom image is that of the qualifier ion. 
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