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A B S T R A C T

This study demonstrates the applicability of harmonizing Sentinel-2 MultiSpectral Imager (MSI) and Landsat-8
Operational Land Imager (OLI) satellite imagery products to enable the monitoring of inland lake water clarity in
the Google Earth Engine (GEE) environment. Processing steps include (1) atmospheric correction and masking of
MSI and OLI imagery, and (2) generating scene-based water clarity maps in terms of Secchi depth (SD). We
adopted ocean-color based atmospheric correction theory for MSI and OLI sensors modified with associated
scene-specific metadata and auxiliary datasets available in GEE to generate uniform remote sensing reflectances
(Rrs) products over optically variable freshwater lake surfaces. MSI-Rrs products derived from the atmospheric
correction were used as input predictors in a bootstrap forest to determine significant band combinations to
predict water clarity. A SD model for MSI (SDMSI) was then developed using a calibration dataset consisting of
log-transformed SDin situ measurements (lnSDin situ) from 79 optically variable freshwater inland lakes collected
within±1 day of satellite overpass on 23-Aug 2017 (MAE=0.53m) and validated with 276 samples collected
within±1 day of a 12-Sep 2017 image (MAE=0.66m) across three ecoregions in Minnesota, USA. A separate
SD model for MSI was also developed using similar spectral bands present on the OLI sensor (SDsOLI) where cross-
sensor performance can be evaluated during coincident overpass events. SDsOLI applied to both MSI and OLI
(SDOLI) models were further validated using two coincident overpass sets of imagery on 27-Sep 2017 (n=18)
and 13-Aug 2018 (n=43), yielding a range of error from 0.25 to 0.67m. Potential sources of model errors and
limitations are discussed. Data derived from this multi-sensor methodology is anticipated to be used by re-
searchers, lake resource managers, and citizens to expedite the pre-processing steps so that actionable in-
formation can be retrieved for decision making.

1. Introduction

The abundant surface waters in Minnesota face multiple threats
from land-use change, eutrophication, invasive species, and warming
temperatures (Bossenbroek et al., 2001; O'Reilly, 2015; Smith, 2016).
Protecting water quality is critically important to lake-rich states be-
cause of the ecological and economic importance of water activities and
tourism. To understand and ensure the sustainability of these aquatic
ecosystems on a statewide scale, adoption of publicly available satellite
Earth observation data will be necessary for effective management.
While traditional in situ sampling methodologies can provide rapid,
accurate information about targeted lakes, sampling more than a frac-
tion of> 10,000 is laboriously challenging. On the other hand, research
efforts using Landsat data to model water quality parameters such as
turbidity and algal pigment concentration across inland lakes date as

far back as 1978 (Carpenter and Carpenter, 1983). Two of the most
relevant for Minnesota lakes is the water clarity image processing
protocol developed by Olmanson et al. (2001) and Kloiber et al.
(2002a) using Landsat Thematic Mapper (TM) and Multi-spectral
Scanner (MSS) sensor data. Since then, the launch of Landsat-8 (13-Feb
2013) carrying the Operational Land Imager (OLI) and the European
Space Agency's (ESA) Sentinel-2A (23-Jun 2015) and 2B (7-Mar 2017)
MultiSpectral Imager (MSI) constellation have advanced the cap-
abilities of water quality products that can be derived from remote
sensing systems (Tyler et al., 2016; Pahlevan et al., 2017a; Pahlevan
et al., 2017b).

While interest has increased since earlier studies (Kloiber et al.,
2002a, 2002b), routine monitoring of lake water quality using satellite
remote sensing is still not a common practice by resource management
agencies; particularly, at a time when moderate resolution imagery is
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readily available from repository platforms like ESA's Copernicus Open
Access Hub, Amazon Web Services, and the U.S. Geological Survey
(USGS) Earth-Explorer at no cost. The absence of satellite remote sen-
sing strategies for routine monitoring of lake water quality parameters
on a statewide basis likely is attributable to the computational demands
required for managing and analyzing the large volume of statewide
imagery using common processing software. To this end, high perfor-
mance and cloud-computing infrastructures will aid in image proces-
sing experimentation and efficiency. For example, Google's Earth En-
gine (GEE) cloud computational platform houses petabytes of imagery
and other auxiliary geospatial datasets that can be accessed through a
JavaScript application programming interface (Gorelick et al., 2017),
and dense temporal MSI and OLI datasets can be seamlessly searched,
handled and processed at a significantly faster rate.

The overall objectives of this research were to (1) implement
modified atmospheric correction formulas into the GEE platform to
produce harmonized remote sensing reflectance (Rrs) products between
MSI and OLI imagery, and (2) demonstrate the applicability of the
validated Rrs products by mapping water clarity (SD) across Minnesota's
optically variable and temporarily dynamic inland lakes. Recently, the
capability of both MSI and OLI to yield similar reflectance values has
been shown to be feasible for both water (Vanhellemont and Ruddick,
2016; Page et al., 2018; Pahlevan et al., 2019) and land (Claverie et al.,
2018), and investigating further into these capabilities in the GEE
platform allow for faster cross-sensor experimentation than using con-
ventional image processing techniques. In terms of water clarity model
development, the Secchi depth (SD) relies heavily on multispectral
channels centered in the blue to red region (typically 443 nm to
670 nm) of the electromagnetic spectrum (Harrington and Schiebe,
1992; Giardino et al., 2001; Olmanson et al., 2013; Lee et al., 2016),
where the combination of ozone (absorbing) and Rayleigh (scattering)
effects may constitute as much as 90% of the total top-of-atmosphere
reflectance (ρTOA) received by the satellite sensor (Gordon et al., 1997;
Mishra et al., 2005). If we are to take advantage of available imagery
for near real-time monitoring at higher frequencies, a consistent cor-
rection to compensate for the temporal variations in atmospheric
properties in these wavelengths is necessary, and anticipated to
strengthen future and existing models of water clarity. However, the
consistency of any atmospheric correction over time across optically
variable inland lakes is not yet fully understood. To address this matter,
we processed MSI and OLI imagery using our Modified Atmospheric
correction for INland waters (MAIN) (described in Section 2.3) within
the GEE environment and compared the generated Rrs values against
the Rrs values converted from the USGS L8 Surface Reflectance Product
(OLI-SR) as a reference. Further, an external image processing software
(ACOLITE, Vanhellemont and Ruddick, 2015, version 20,190,326) also
equipped to generate Rrs products from MSI and OLI imagery was in-
cluded in the comparison to provide a secondary means of performance.

If the long-term goal is to develop reliable and cost-effective ap-
proaches to regional measurements of major indicators of water quality
that can be used by management agencies to extend ground-based
measurements (Olmanson et al., 2008; Olmanson et al., 2001; Kloiber
et al., 2002b) then development of automated approaches that can take
advantage of the improved spectral, spatial, radiometric and temporal
resolution of the MSI and OLI systems are needed for improved water
quality monitoring and fisheries management. Here, a SD model is
developed from atmospherically corrected MSI imagery using a robust
in situ SD dataset (SDin situ) collected from the Citizen Lake Monitoring
Program (CLMP), coordinated by the Minnesota Pollution Control
Agency (MPCA, www.pca.state.mn.us/water/resources-volunteers)
across three ecoregions in Minnesota, USA. Significant band-ratios in
predicting SD were chosen based on a bootstrap forest technique
(Breiman, 1996). Considering the spectral and spatial similarities be-
tween five MSI and OLI sensor bands in the visible and NIR portion of
the electromagnetic spectrum (Table 1), a more restricted SD model
was developed for MSI using comparable OLI bands (SDsOLI) so that the

model may be extrapolated to OLI data to increase overall temporal
resolution when using both sensors for multi-platform water clarity
assessments. The data derived from this consistent multi-sensor meth-
odology are anticipated to be used by lake resource managers and
agencies, researchers and citizens to eliminate the pre-processing steps
for satellite imaging applications so that actionable information can be
readily retrieved for decision-making.

2. Methodology

2.1. Study area

The study area was intended to target as many of the>12,000
inland surface waters across the state of Minnesota, USA as possible
using Level-1 MSI and OLI imagery provided in the GEE repository.
Positioned in the upper Midwest United States at 43.4–49.4° N,
89.4–96.8° W, Minnesota's vast collection of optically variable water
bodies is spread across seven ecoregions (Fig. 1), geographical areas
where the land cover (agriculture, forest, prairie, etc.), underlying
geology, soils, and potential native plant community are relatively si-
milar (Omernik, 1987). Four of these ecoregions include ~96% of
Minnesota's lakes. The Northern Lakes and Forest Ecoregion (NLF), with
46% of the state's lakes, has a higher concentration of optically clearer
waters (lower chlorophyll) and lakes with higher colored dissolved
organic matter (CDOM) (Brezonik et al., 2019). The North Central
Hardwood Forests Ecoregion (NCHF), with roughly 38% of the state's
lakes, has a wide range of water clarity. Lakes in the Western Corn Belt
Plains Ecoregion (WCBP), which has 7% of the state's lakes, generally
are more eutrophic and have low water clarity. The Northern Glaciated
Plains (NGP) Ecoregion, with 6% of the lakes, also has low water
clarity. Statewide assessments for> 10,500 lakes using Landsat data
revealed that water clarity has remained stable between 1985 and 2005
in the NLF and NCHF ecoregions but declined slightly in the WCBP and
the NGP (Olmanson et al., 2013).

2.2. Satellite data and image pre-processing

Different data sets of S2A/MSI and L8/OLI imagery were searched
from the GEE repository and allocated for either atmospheric correction
assessment and/or SD model calibration/validation (Table 2). For SD
model calibration and validation we targeted mostly clear imagery
acquired from a late-summer index period (July 15–September 15)
when short-term variability and water clarity are at a seasonal
minimum (Stadelmann et al., 2001). Before any statistical evaluation or
performance assessment, all L8/OLI Level-1 imagery were first con-
verted from the digital number (DN) format into TOA reflectance
(ρTOA):

= × +ρTOA, M (λ ) DN (λ ) A (λ )i i iOLI L OLI L (1)

where ρTOA is the top-of-atmosphere spectral reflectance measured by
the OLI sensor at wavelength λi, and ML and AL are the band multi-
plicative and additive coefficients found in the image metadata
(Landsat-8 Data Users Handbook, V2.0). For S2/MSI, Level-1C ρTOA is
achieved by multiplying the imagery by the scaling factor (0.0001).

Next, surface water bodies were isolated by masking out sur-
rounding terrestrial features using a threshold technique in the SWIR
portion of the spectrum. A simple threshold value (0.03) was assigned
to a mosaicked image which consisted of a statewide median value from
the SWIR band (B7 at 2201 nm) from the entire collection of Tier-1 L8
Surface Reflectance Product (OLI-SR) with<2% cloud cover over
Minnesota between 2013 and 2018 (n=172). Imagery between June
and October were used for masking to avoid snow and lake-ice con-
taminated pixels. A masking threshold of 0.03 worked well to separate
the high absorbing water features from the surrounding landscape in
this area, but this value may need some adjustment for other geo-
graphical regions. Once the pre-processing steps were finalized, we
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Table 1
Sensor characteristics for L8/OLI and S2/MSI, including bandcenter, bandwidth, spatial resolution and signal-to-noise ratio (SNR). SNR values have been scaled for
radiances observed over clear coastal waters.
(Adopted from Pahlevan et al., 2017b.)

Landsat-8/OLI

Band ID B1 B2 B3 B4 – – – – B5 B6 B7

Band center (nm) 443 482 561 655 – – – – 865 1609 2201
Bandwidth (nm) 20 65 60 40 – – – – 30 85 190
Resolution (m) 30 30 30 30 – – – – 30 30 30
Signal-to-Noise Ratio

(SNR)
284 321 223 113 – – – – 45 10.1 7.4

Sentinel-2/MSI

Band ID B1 B2 B3 B4 B5 B6 B7 B8 B8A B11 B12

Band center (nm) 444 497 560 664 705 740 783 842 865 1610 2190
Bandwidth (nm) 20 55 35 30 15 15 15 15 20 9 175
Resolution (m) 60 10 10 10 20 20 20 10 20 20 20
Signal-to-Noise Ratio (SNR) 439 102 79 45 45 34 26 20 16 2.8 2.2

Fig. 1. Study area. Minnesota, USA and its corresponding ecoregions. Basemap source: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA,
METI, NRCAN, GEBCO, NOAA, INCREMENT P.

Table 2
Image dates and ID(s) of S2/MSI and L8/OLI scenes used in the study along with the allocated application.

Date GEE Scene ID Application n

23-Aug-17 COPERNICUS/S2/20170823T170849_20170823T171828_T15 SD model calibration 79
12-Sep-17 COPERNICUS/S2/20170912T170949_20170912T171451_T15 SD model validation 276
27-Sep-17 COPERNICUS/S2/20170927T172111_20170927T172106_T15TVK

LANDSAT/LC08/C01/T1/LC08_027029_20170927
Atmospheric correction assessment, SD model validation 18

13-Aug-18 COPERNICUS/S2/20180813T170851_20180813T172023_T15TVK
LANDSAT/LC08/C01/T1/LC08_027029_20180813

SD model validation 43
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applied atmospheric correction (Section 2.3) to the collection of tar-
geted MSI and OLI imagery for further analysis (Section 2.4).

2.3. Modified atmospheric correction for INland waters (MAIN)

We adopted atmospheric correction theory from traditional ocean-
color techniques (Hu et al., 2000; Wang et al., 2009; Werdell et al.,
2010; Dash et al., 2012; Vanhellemont and Ruddick, 2015), where the
desired water-leaving reflectance (ρw) and subsequent remote-sensing
reflectance (Rrs) (an apparent optical property) is derived (Gordon
et al., 1983):

= − tρ (λ ) ρ (λ ) ρ (λ )/ (λ )w i rc ami i i (2)

=R (λ ) ρ /πrs i w (3)

where t(λi) is the diffuse transmittance from the water surface to the
satellite (Hu et al., 2004). ρrc is the Rayleigh corrected reflectance
(Gordon and Wang, 1994; Dash et al., 2012) and includes other cor-
rection factors including the Rayleigh scattering phase function
(Doerffer, 1992) Fresnel correction (Gordon and Wang, 1994) as well as
the ozone adjustment (Mishra et al., 2005; Dash et al., 2012). The ozone
absorption coefficient for each spectral band was taken from the
Aerosol Optical Depth Value-Added Product (Koontz et al., 2013) and
the daily measured ozone concentration obtained from the merged
products of Total Ozone Mapping Spectrometer (TOMS) Earth Probe,
TOMS/Nimbus-7, TOMS/Meteor-3, and the Ozone Monitoring Instru-
ment (OMI) available in the GEE repository (collection ID: TOMS/
MERGED). Additionally, a digital elevation model (DEM) from the
Shuttle Radar Topography Missions (SRTM, 30m) (Farr et al., 2007)
was used to calculate the Rayleigh optical thickness (Hansen and
Travis, 1974) on a pixel-by-pixel basis.

The strong impact of the aerosol path reflectance (ρa) in the visible
and NIR spectral range can be difficult to correct as complex scattering
and absorbing properties of aerosols vary spectrally and with aerosol
size, shape, chemistry and density (Vermote et al., 2016). Previous
research has demonstrated that observations of optically turbid water
pixels within the Rayleigh- corrected shortwave infrared (SWIR)
channels have comparable signal responses to that of clear water pixels
(Wang et al., 2009; Werdell et al., 2010; Vanhellemont and Ruddick,

2015). Aerosol path radiance reflectance has been expressed as (Gordon
and Wang, 1974):

= −keρ (λ )a
c

NIR
( λ) (4)

where k and c are constants. Assuming negligible signal in the SWIR
wavelengths even in the most optically complex waters (Vanhellemont
and Ruddick, 2015), the two Rayleigh-corrected SWIR bands available
on the MSI and OLI (ρrc(λSWIR-1,2)) were used for aerosol determination
rather than the NIR band, where the optically active constituents
(OACs) in meso- to hyper-eutrophic inland lakes usually interfere with
the NIR signal:

= =−
−

−keρ (λ ) ρ (λ )rc
c

rcSWIR 1
( λ)

SWIR 2 (5)

Aerosol type ε was then determined for each pixel as the negative of
the slope of the straight line (Hu et al., 2000; Dash et al., 2012) between
ΔλSWIR-1,2 and ΔLn(ρrc(λSWIR-1,2)) as:

− − = −− − − −Ln Ln( (p (λ )) (p (λ ))/(λ λ ) εrc rcSWIR 2 SWIR 1 SWIR 2 SWIR 1 (6)

The output returns a raster image of ε which was extrapolated to the
visible and NIR bands:

= ×− − −
− × −eρ (λ ) ρ (λ ) (F ’/F ’(λ ))am rcVIS NIR SWIR 2 0 0 SWIR 2

( ε (λi/λswir 2)) (7)

where F0’ is the instantaneous extraterrestrial solar irradiance adjusted
for Earth-sun distance (Dash et al., 2012) and ρam is the aerosol re-
flectance map needed to quantify the remaining contributions from
aerosols across each spectral band. Although the MSI and OLI sensors
were not developed specifically for inland aquatic applications, the
provided variables within the image metadata allow to fulfill the ne-
cessary equations to derive Rrs in the GEE environment.

2.4. Evaluation of MSI and OLI Rrs products

First, we assessed MAIN derived Rrs values using imagery acquired
during a coincident overpass between MSI and OLI on 27-Sep 2017
(Table 2) over a region with a wide range of water clarity, the Lake
Minnetonka area in east-central Minnesota (Fig. 2a). Within the over-
lapping region of the MSI and OLI footprint, Corresponding SD mea-
surements from 18 optically variable inland lakes were sampled by
participants at the Citizen Lake Monitoring Program (CLMP)

Fig. 2. False color composites of the coincident overpass imagery between L8-L1T Path 27, Row 29 (ID: LANDSAT/LC08/T1/LC08_027029_20170927) at 11:59 am
CST (RGB: B7/B5/B2) and S2-L1C (ID: COPERNICUS/S2/20170927T172111) sub-track of T15TVK at 12:21 pm CST on 27-Sep 2017 (RGB: B8A/B4/B3) (a). Sampled
locations by CLMP (white circles) outside the overlapping region between MSI and OLI (blue line) were excluded (b). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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within±1 day of the coincident overpass event (Fig. 2b). Any samples
that fell beyond the overlapping footprints were excluded, because MSI
imagery during 2017 was limited over the USA and for that date only
covered a portion of southern Minnesota. Sampled point location data
were uploaded to a GIS and transformed to a 50m circular buffer
around the centroid. Corresponding mean satellite ρTOA and Rrs values
of pixel regions within the polygons were then extracted and tabulated.
Prior to pixel extraction, MSI pixels were resampled to 30m and re-
gistered to match the OLI georeferenced image prior to comparison
(Storey et al., 2016).

In the absence of radiometric reference measurements such as buoy
or other suitable matchup data for the Minnesota water bodies, several
researchers have demonstrated that the inter-comparison of other at-
mospheric corrections represents an alternative option (Suresh et al.,
2006; Vanhellemont and Ruddick, 2014; Bernardo et al., 2017). To this
end, we evaluated MAIN derived MSI and OLI Rrs image products by
evaluating the statistical closeness with Rrs values converted from the
USGS Landsat-8 Surface Reflectance Product (OLI-SR), readily available
in the GEE repository. Previous evaluations of MSI and OLI derived Rrs

products have included the ocean color component of the Aerosol Ro-
botic Network (AERONET-OC), inter-comparisons and cross-calibra-
tions against other ocean color products, and optimizations of vicarious
calibration gains (Pahlevan et al., 2017a, Pahlevan et al., 2017b, Ilori
et al., 2019). In this study, lacking AERONET sites, OLI-SR spectra were
defined as the closest representation of reference spectra considering
previous successful reports on using OLI-SR with corresponding in situ
water quality data for inland aquatic applications (Kuhn et al., 2019;
Slonecker et al., 2016; Bernardo et al., 2017; Markert et al., 2018). We
evaluated MAIN and ACOLITE derived Rrs values by calculating the root
mean square difference (RMSD) across each multispectral band (λi)
against the OLI-SR product:

=
∑ −

−
=i

x λi x λi

n
RMSD(λ )

( ( ) ( ))
(unit:sr 1)i

n
Rrs SR1

2

(8)

where xRrs are the mean Rrs values from the sampled pixel regions using
either the MAIN or ACOLITE method and xSR is the OLI-SR reference
spectra. Further, the same OLI and MSI coinciding overpass imagery
were processed outside of GEE using ACOLITE (Vanhellemont and
Ruddick, 2015) as a secondary comparison to provide a relative base on
how well MAIN derived MSI and OLI Rrs values were performing over
aquatic surfaces.

Next, we assessed the relative signal responses across comparable
wavelengths (Table 1) using same MSI and OLI coincident imagery
before and after atmospheric correction through mean absolute percent
difference (MAPD%) in addition to the coefficient of determination (R2)
to evaluate cross-sensor consistency:

=
∑ −

×i
x x

x
MAPD(λ )

| |
100i MSI i

OLI i

OLI(λ ) (λ )

(λ ) (9)

where xMSI and xOLI are either the mean ρTOA or Rrs values for MSI and
OLI at wavelength i, respectively.

2.5. Water clarity model calibration

SD is the most commonly measured water quality variable and has
been shown to be strongly correlated with Landsat blue and red spectral
bands (Kloiber et al., 2002a, 2002b; Olmanson et al., 2008). Corre-
sponding blue and red (B2 and B4, respectively) MSI bands were hy-
pothesized to contribute the most significance for SD model calibration
purposes. Previous empirical methodologies for developing water
clarity models involved direct stepwise linear regression between log-
transformed SDin situ (lnSDin situ) and Landsat derived reflectances
(Olmanson et al., 2001; Olmanson et al., 2013; Kloiber et al., 2002a,
2002b; Lillesand et al., 1983). However, the MSI sensor has three

Fig. 3. False color MSI image composite (RGB: B8A/B4/B3) over Minnesota on 23-Aug 2017 (a) and on 12-Sep 2017 (c). Time-window qualified SDin situ sample
locations collected by CLMP (±1 day within satellite overpass) across the WCBP, NCHF, and NLF ecoregions are represented as white circles for the SD model
calibration (b) and blue triangles for model validation dataset (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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additional red-edge bands (Table 1), one of which (B5, centered at
~705 nm) has been demonstrated to improve chlorophyll measure-
ments (Gitelson et al., 2007; Gitelson et al., 2009; Mishra et al., 2013;
Olmanson et al., 2015) thus providing the potential of yielding more
reliable water clarity estimates. To explore the potential of these bands
in predicting water clarity, we implemented a bootstrap forest tech-
nique within the JMP Pro 14 software (JMP®, Version 14. SAS Institute
Inc., Cary, NC, 1989–2007) that informs the most significant bands and
band-ratio combinations to model lnSDin situ.

The calibration dataset consisted of 79 lnSDin situ measurements
obtained by the Citizen Lake Monitoring Program (CLMP) collected
within±1 day of the clear portions of the 23-Aug 2017 imagery
(Fig. 3a-b) as the dependent variable and MAIN derived mean MSI-Rrs

values from bands B1-B8A (443–865 nm) and all band ratio permuta-
tions as independent input parameters (47 total terms). The bootstrap
forest technique uses many decision trees to associate input terms with
calibration/validation data, chosen in part randomly to determine the
most significant terms that predict a response variable (lnSDin situ) based
on the highest total sum of squares (SSTO) (Hastie et al., 2009). Pre-
diction consistency of the bootstrap decision for each term was eval-
uated by splitting the samples into training (70%) and validation (30%)
datasets and run for 10,000 iterations. Here, only two of the most
contributing terms that produced highest coefficient of determination
(R2) with 79 lnSDin situ measurements collected across the WCBP, NCHF,
and NLF ecoregions of Minnesota were used for SD model development.
We restricted to two-terms only so that they are consistent with water
clarity models developed in the past (Kloiber 2002a, 2002b: Olmanson
et al., 2008). Further, a second model was developed for MSI except the
three red-edge (B5-B7) bands and one NIR band (B8) which are absent
on the OLI sensor were excluded for consideration in order to establish
a robust water clarity model for both platforms (SDsOLI). Overall model
accuracy was then assessed on how well the calibrated SDMSI (and
SDsOLI) model forecasted SDin situ and was evaluated using the mean
absolute error (MAE) as they are less sensitive to outliers (Seegers et al.,
2018):

=
∑ ∣ − ∣

=
SD SD

n
MAE i

n
sensor in situ1

(10)

where SDsensor is either SDMSI or SDsOLI, and a value of 0 is desired.

2.6. Water clarity model validation

For SD model validation, we first applied our calibrated SDMSI

model on an S2A/MSI image acquired on 12-Sep 2017 (Table 2) against
276 corresponding SD measurements collected by the CLMP ± 1 day
of satellite overpass (Fig. 3c-d). Accuracy of all SD models were de-
termined through MAE with corresponding SDin situ data. To evaluate
the consistency of the SDMSI and SDOLI models on a more temporal
scale, two coinciding overpass images at different dates were used as
secondary and tertiary SD model validation datasets. In addition to the
18 SDin situ measurements corresponding with the coincident MSI/OLI
overpass imagery acquired on 27-Sep 2017 used to evaluate atmo-
spheric correction (Fig. 2b), a second image pair acquired on 13-Aug
2018 over the same region (not displayed) was also included in the
validation process and introduced another unique 43 SDin situ mea-
surements (Table 2). It is important to note that the ranges of the sec-
ondary and tertiary 18 and 43 SDin situ measurements collected on 27-
Sep 2017 (20) and 13-Aug 2018 (30) are 0.30–7.00m and 0.45–6.70m,
respectively. These are comparable ranges used in the MAIN-derived
SDMSI (and SDsOLI) calibration (0.20–6.70m) on 23-Aug 2017 and 10

validation (0.43–6.7m) dataset on 12-Sep 2017 (Fig. 4), thus capturing
the representational range of water clarity seen in Minnesota on a
statewide scale in a single tile.

3. Results and discussion

3.1. Atmospheric correction

With the absence of in situ radiometric data in the Minnesota region
for spectral comparison with MAIN derived MSI-Rrs and OLI-Rrs values,
Rrs values converted from the USGS OLI-SR product (Rrs=OLI-SR / π)
were used as reference (Section 2.4). Overall, both MAIN and ACOLITE
methods yielded Rrs values comparable to the USGS OLI-SR product for
both MSI and OLI from the 18 lakes sampled for atmospheric correction
(Fig. 5).

The higher RMSD in the MSI-Rrs spectra relative to OLI-Rrs was
expected due to the differences in the signal-to-noise ratio (SNR)
(Table 1) of the MSI sensor rather than the direct OLI to OLI-SR com-
parison. Interestingly, Rrs values in the blue, green and red bands (B2-
B4) resulting from both MAIN and ACOLITE yielded the lowest RMSD
across comparable bands relative the reference spectra. This is im-
portant as these bands have been shown to contribute the highest sig-
nificance in estimating SD for sensors used in previous research
(Olmanson et al., 2013; Olmanson et al., 2001; Kloiber, 2002), and
were considered as target variables for developing water clarity models
(Section 2.5). Regardless of the higher RMSD, the mean Rrs spectra
derived from ACOLITE share similar shape and magnitude relative to
both MAIN and OLI-SR datasets from the 18 sampled lakes (Fig. 6). This
provided confidence in the MAIN Rrs products considering the reason-
able matchup with ACOLITE over aquatic surfaces and especially the
OLI-SR product which was not originally intended for aquatic appli-
cations.

We also analyzed the relative signal response between MAIN and
ACOLITE derived MSI and OLI reflectance values before and after at-
mospheric correction to evaluate cross-sensor performance. First, MSI-
Rrs and OLI-Rrs values produced from MAIN outlined in Section 2.3 most
notably generated positive (non-negative) values across all comparable
spectral bands (Fig. 7), where negatives values have been commonly
observed in previous studies due to inconsistent atmospheric correction
in optically variable regions, resulting in masked pixels values with no
data (Werdell et al., 2010; Bailey et al., 2010; Dash et al., 2012).

The mean absolute percent difference (MAPD%) in ρTOA values
between MSI and OLI prior to correction were all< 10% in the visible
bands but ~14% in the NIR band (Fig. 8). ρTOA R2 values were slightly
lower between the MSI and OLI coastal band (R2=0.61) and even less
in the NIR band (R2= 0.36), however, the signal response between MSI
and OLI ρTOA blue, green and red bands exhibit nearly synchronized
readings, with R2=0.92, 0.98, and 0.96 respectively (Fig. 9a). Corre-
lation differences observed in the coastal band were likely due to
downscaling from the native 60m spatial resolution to match OLI at
30m (Mandanici and Bitelli, 2016), while the NIR band could again be
attributed to the SNR difference between the two sensors or other in-
herent signal characteristics (Pahlevan et al., 2017b) (Table 1). After
atmospheric corrections, band-by-band PD between MSI and OLI Rrs

values mostly remained low as seen in the ρTOA comparison (Fig. 8).
After MAIN processing, band-by-band R2 values were conserved
(Fig. 9b), and a similar 1:1 signal response in the band-by-band com-
parison after ACOLITE processing (Fig. 9c) suggested the suitability of
using MAIN for aquatic applications. Harmonized Rrs products between
the MSI and OLI were seen again after MAIN processing using another
coincident overpass date acquired on 13-Aug 2018 (Fig. 10), again
showing highest MAPD% in the coastal (B1) and NIR (B5) bands. These
results show that the conservation in the R2 values of the relative signal
response between MSI and OLI and the consistently low relative MAPD
after MAIN processing allow for relatively consistent Rrs retrievals from
both sensors on a temporal scale regardless of atmospheric effects. More
importantly, it allows for the development of consistent water clarity
(and other water quality) models across both MSI and OLI sensors so
that both datasets can be incorporated in time series analysis. From
here, efforts can be made by lake management practices to improve the
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overall accuracy of the derived Rrs products for select study sites for
continuous monitoring purposes. The overall accuracy of the generated
MSI-Rrs and OLI-Rrs values would improve with frequent, routine in situ
radiometric and water quality parameter measurements in a more
systematic manner to fully understand the relationships between Rrs

and the OACs for a particular optically variable water body.

3.2. Water clarity model calibration

Our next objective was to evaluate the applicability of the generated
MSI and OLI Rrs products from MAIN in mapping water clarity (in terms
of SD) (Section 2.5). Previous research on mapping water clarity in
Minnesota used mainly a consistent blue/red, and blue 2-term model
(Kloiber et al., 2002a, 2002b) calibrated through multiple linear re-
gression analysis using Landsat satellite spectral data and corre-
sponding SDin situ measurements (Olmanson et al., 2008; Olmanson
et al., 2016). Here, we used a bootstrap forest method to obtain model-
independent indicators of the most important predictors of water clarity
using the 23-Aug 2017 calibration dataset (Section 2.5). The bootstrap
forest technique was necessary in this case as the additional spectral
bands of MSI (relative to OLI) could improve water clarity estimates. Of

Fig. 4. Comparable statistics and corresponding histogram plots of in situ water clarity (SDin situ) distribution from the calibration and three validation datasets.

Fig. 5. Comparable RMSD (unit: sr−1) values between MAIN and ACOLITE corrected MSI and OLI Rrs bands against the USGS OLI-SR reference spectra during a MSI/
OLI coinciding overpass on 27-Sep 2017 (n=18).

Fig. 6. Comparable MSI and OLI spectra derived from MAIN (solid line) and
ACOLITE (dashed line) against the OLI-SR product (blue line) using the mean
Rrs values from the 18 locations from the 27-Sep 2017 coincident overpass
imagery. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the 47 terms tested as input predictors for lnSDin situ, the two terms
yielding the highest sum of squares (SSTO) from the bootstrap forest
were MSI-Rrs(B2/B4) and MSI-Rrs(B5×B4). The MSI-Rrs(B2/B4) ratio
was expected to be a contributing candidate in predicting lnSDin situ as
previous successes using prior Landsat satellites have been documented
(Olmanson et al., 2008; Olmanson et al., 2016). These two terms re-
sulting from the bootstrap forest generated the most favorable linear
regression (R2=0.88) with lnSDin situ and took the form:

= + × +a b clnSD (R (B2)/R (B4)) (R (B5) R (B4))MSI MSI rs rs MSI rs rs MSI

(11)

where coefficients aMSI (2.4367945), bMSI (−2717.821), and cMSI

(−2.468818) were fit to the calibration data and lnSDMSI is the log-
transformation of the desired MSI derived SD (SDMSI) for a given pixel
(Fig. 11a). From these results it is clear that the MSI-Rrs(B5) is a major
contributor to water clarity prediction, a considerable advantage over

the OLI sensor. The capability of the MSI-Rrs(B5) band to be used as a
predictor for water clarity makes sense as chlorophyll-a exhibits strong
reflectance in the 705–708 nm spectral region, and is often used in
satellite-derived algal indices (Mishra et al., 2013; Augusto-Silva et al.,
2014; Watanabe et al., 2015; Ogashawara et al., 2017).

An additional lnSD model was developed using the 23-Aug 2017
MSI imagery where only the comparable OLI bands were used as the
independent variables (lnSDsOLI). Here, the MSI-Rrs(B2)/Rrs(B4) ratio
again resulted as the highest contributing candidate (in terms of SSTO)
for predicting lnSDin situ, followed by the green band (B3). The lnSDsOLI

model using these two variables generated an R2 of 0.85 with the in situ
data in this case, slightly less but comparable to the lnSDMSI relation-
ship (Fig. 11b):

= + +a b clnSD (R (B2)/R (B4)) (R (B3))sOLI sOLI rs rs sOLI rs sOLI (12)

where coefficients asOLI (2.6758384), bsOLI (−29.49688), and csOLI

Fig. 7. Pseudocolor maps of comparable OLI-Rrs (left) and MSI-Rrs (right) products over Lake Minnetonka, MN and surrounding water bodies during the coinciding
overpass on 27-Sep 2017.
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(−2.468818) were fit to lnSDsOLI data, and is mainly to be used for MSI
in tandem with the OLI sensor after resampling the MSI pixels to match
OLI 30m spatial resolution for future cross-sensor comparisons. Finally,
the converted SDMSI and SDsOLI values generated mean absolute errors

Fig. 8. Mean absolute percent difference (MAPD%) between MSI and OLI re-
flectance signals before atmospheric correction (TOA) and after MAIN and
ACOLITE processing using the coincident 27-Sep 2017 imagery (n=18).

Fig. 9. Band-by-band relationships between comparable MSI (y-axis) and OLI (x-axis) spectral bands before atmospheric correction (TOA) (a) after MAIN (b) and
ACOLITE (c) processing using the 27-Sep 2017 coincident overpass imagery (n=18).

Fig. 10. Harmonized Rrs pixel values between MSI (y-axis) and OLI (x-axis)
from the coincident overpass imagery acquired on 13-Aug 2018 (n=43) after
MAIN processing.

B.P. Page, et al. Remote Sensing of Environment 231 (2019) 111284

9



(MAE) of 0.53m and 0.58m against the 23-Aug 2017 calibration da-
taset, respectively (Fig. 11c and d). This error (in terms of lake man-
agement) demonstrates the ability to derive a relatively accurate scene
specific map of estimated SD from a MSI or OLI satellite image. For
perspective, limnologists usually consider an SD < 2m as indicative of
eutrophic conditions, and SD < 1m as indicative of hypereutrophy.
Next, further validation datasets were used to evaluate whether this
MAE varies across different dates of imagery as well as the deviation of
the MAE across both sensors (Section 3.3).

3.3. Water clarity model validation

For SD model performance on a temporal scale, we compared three
SD datasets corresponding with three dates of imagery: 276 SDin situ

samples collected by the CLMP corresponding with± 1 day within a
S2A/MSI overpass on 12-Sep 2017 as a primary (10) validation dataset
(considering the large sample size), 18 samples from the coincident
overpass imagery on 27-Sep 2017 (20), and 43 samples from a tertiary
(30) coincident overpass event between MSI and OLI on 13-Aug 2018
described in Section 2.6 (Table 2). The 10 validation dataset was mainly
used for SDMSI and SDsOLI model consistency for the MSI based models
whereas the 20 and 30 datasets were used to evaluate cross sensor
performance between SDsOLI and SDOLI in addition to model validation.

The 10 validation dataset (12-Sep 2017) resulted in a MAE only
0.13m greater than the calibration dataset between SDMSI and SDin situ

with an MAE of 0.66m using Eq. (11) (Table 3). Similarly, a compar-
able MAE of 0.67m resulted when using the SDsOLI model (Eq. (12)) (a
0.09m increase from the calibration dataset). The slight increase of
MAE using the 10 dataset may be a result of the increased sample size
compared to the calibration dataset (n=276) and may indicate a more
robust representation of the model error. On the other hand, lower

errors resulted when using the cross-sensor model (Eq. (12)) on the 20

and 30 validation datasets (Table 3). For the 20 validation dataset
(n=18), a consistent estimate of SD was generated for both sensors,
with MAE of 0.33m for SDsOLI and 0.36m for SDOLI, as expected due to
the harmonized Rrs input bands. When applying Eq. (11) to the MSI
imagery, a lower MAE of 0.25m was generated, reassuring the im-
provement of water clarity estimation using the 705 nm band. A lower
MAE of 0.38m also resulted in the 30 validation dataset when using the
SDMSI model opposed to 0.62m when using SDsOLI. In summary, the
developed SD models had a MAE range of 0.25–0.67m.

Satellite and field measurements can never exactly match. Any
disagreements between the two could originate from many sources:
difference in spatial coverage (20-30m pixels vs. a single Secchi dia-
meter), error in field measurements, error in the satellite atmospheric
correction, and errors in the SD model. Maybe it is more important to
look at the consistency of satellite-based values as if they were the
standard way of measuring water clarity (e.g., in terms of consistency
between sensors, etc.) rather than by comparing to ground-based SD

Fig. 11. Performance plots of predicted lnSDMSI (a) and lnSDsOLI (b) models against the lnSDin situ calibration dataset from 23-Aug 2017 (n=79). Corresponding SD
maps applied to the 23-Aug 2017 imagery in the GEE API (c).

Table 3
Mean absolute error (MAE) of satellite derived SD estimates from the three
validation datasets.

Date Model MAE (m) n

12-Sep-17 SDMSI 0.66 276
SDsOLI 0.67

27-Sep-17 SDMSI 0.25 18
SDsOLI 0.33
SDOLI 0.36

13-Aug-18 SDMSI 0.38 43
SDsOLI 0.62
SDOLI 0.44
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values as though they represent the “true values” of water clarity. The
relative consistency of MAE values across all three comparisons (1°, 2°,
3°) may be saying something more important than the actual compar-
isons with the ground data.

4. Conclusions

This study aimed to provide a multi-sensor processing methodology
for MSI and OLI imagery to map water clarity in Minnesota so that
regional water quality assessments may be carried out in a fast, routine
manner. The performance of MAIN was successfully demonstrated as a
viable alternative to derive realistic Rrs values for lake water quality
applications, and the advantage of GEE allows for quick and vigorous
testing of the proposed methodologies for both atmospheric correction
and water clarity model validation in either different geographical re-
gions or scales.

Implementing the strategies demonstrated in this study in a high
performance computing environment will allow the processes to be
automated for generating near real-time water clarity maps for
Minnesota's inland water bodies as soon as the image products become
available for download. The cross-sensor image processing metho-
dology in its current form could have a large impact on the routine
monitoring protocols conducted by lake management and other re-
source agencies. For example, the exported water clarity maps from
GEE can readily be implemented into a GIS or other web map service,
and could help educate resource managers regarding areas susceptible
to eutrophication either in person or online. Further, information de-
rived from these maps could aid in characterizing the phenology of
water clarity patterns on a regional scale. Being able to prioritize
sampling efforts toward the more affected water bodies without ex-
tensive field sampling could become a capacity building exercise for a
routine monitoring practice standard, and ultimately reduce time and
financial constraints.
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