Minnesota River Paddlefish, Sturgeon, Backwaters, Plankton, and More!

Outcomes of a 3-year ENRTF funded project

Tony Sindt Minnesota River Specialist

Project Staff: Eric Katzenmeyer, Mike Vaske, Mike Wolf, Kayla Stampfle

Jodie Hirsch

Heidi Rantala

Joel Stiras

Brian Schultz

AND MANY MORE!

Interns: Garrett Ober, Ben Erb, Melissa Oubre, Sam Peterson

Objectives: Establish baseline datasets and enhance understanding

Skip: bathymetry maps & fish community assessments

Shovelnose Sturgeon: population dynamics and telemetry

- Water, phytoplankton, and zooplankton samples
- Monthly May–October
- 2016*, 2017, & 2018

- Water, phytoplankton, and zooplankton samples
- Monthly May–October
- 2016*, 2017, & 2018

Lower Trophic Ecology Phytoplankton

Phytoplankton

Zooplankton

Many Abiotic Variables

- Spatial (sites)
- Temporal (year, season, month)
- Water chemistry (e.g., TSS, TKN)
- Site (temp, Secchi, relative discharge)

Many Abiotic Variables

- Spatial (sites)
- Temporal (year, season, month)
- Water chemistry (e.g., TSS, TKN)
- Site (temp, Secchi, relative discharge)

Multivariate Analyses (NMDS)

Many Abiotic Variables

- Spatial (sites)
- Temporal (year, season, month)
- Water chemistry (e.g., TSS, TKN)
- Site (temp, Secchi, relative discharge)

Multivariate Analyses (NMDS)

Summary

• Impoundments have the greatest influence on zooplankton.

NMDS2

Many Abiotic Variables

- Spatial (sites)
- Temporal (year, season, month)
- Water chemistry (e.g., TSS, TKN)
- Site (temp, Secchi, relative discharge)

Multivariate Analyses (NMDS)

Summary

- Impoundments have the greatest influence on zooplankton.
- Excluding that influence, temporal variability (month) is greatest for both phytoplankton and zooplankton.

Many Abiotic Variables

- Spatial (sites)
- Temporal (year, season, month)
- Water chemistry (e.g., TSS, TKN)
- Site (temp, Secchi, relative discharge)

Multivariate Analyses (NMDS)

Summary

- Impoundments have the greatest influence on zooplankton.
- Excluding that influence, temporal variability (month) is greatest for both phytoplankton and zooplankton.
- The greatest influence on temporal variability is relative discharge.

Oldest photo evidence

Oldest photo evidence

Only 1
sampled
by DNR
staff prior
to 2016

Oldest photo evidence

Only 1
sampled
by DNR
staff prior
to 2016

Last 20 years: Increasing incidental catches by anglers and commercial fishermen

Oldest photo evidence

Only 1
sampled
by DNR
staff prior
to 2016

Last 20 years: Increasing incidental catches by anglers and commercial fishermen

Nearest confirmed spawning: Chippewa

River > 125 km downstream

With targeted sampling we captured **81**PAH during 2016–2018

With targeted sampling we captured 81
PAH during 2016–2018

Most PAH were caught from <u>4 sites</u>

With targeted sampling we captured <u>81</u>
PAH during 2016–2018

Primarily with stationary or drifted 5" mesh gill nets

Paddlefish are certainly more abundant in the Minnesota River than previously perceived

Most PAH were caught from 4 sites

Telemetry data provides valuable insight into habitat use and movement patterns

Telemetry data provides valuable insight into habitat use and movement patterns

3 Movement Patterns (20 fish):

Telemetry data provides valuable insight into habitat use and movement patterns

3 Movement Patterns (20 fish):

· Sedentary: 7 Fish that exhibit small home ranges

Paddlefish

Telemetry data provides valuable insight into habitat use and movement patterns

3 Movement Patterns (20 fish):

- Sedentary: 7 Fish that exhibit small home ranges
- Mobile: 3 Fish that frequently make large movements

Greatest shortterm movement: > 230 km Greatest total movement:

> 1,300 km

Paddlefish

Telemetry data provides valuable insight into habitat use and movement patterns

3 Movement Patterns (20 fish):

- Sedentary: 7 Fish that exhibit small home ranges
- Mobile: 3 Fish that frequently make large movements
- Forays: 5 Fish initially tagged in other rivers that made 1 or 2 forays into the MNR (Stiras & Hoxmeier)

Paddlefish

The Big Question:

The Big Question:

Are Paddlefish successfully reproducing within the Minnesota River?

Sturgeons are **globally endangered**, but SLS may be
among the most resilient spp.
due to unique life history
characteristics

Sturgeons are **globally endangered**, but SLS may be
among the most resilient spp.
due to unique life history
characteristics

2015: removed as state species of conservation need and MN DNR opened a catch-and-release season

Sturgeons are **globally endangered**, but SLS may be
among the most resilient spp.
due to unique life history
characteristics

Likely more abundant in the Minnesota River than any other MN system. Unfortunately, very little is know about their population dynamics and movement patterns

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573–683 mm

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573-683 mm

Mark-Recapture:

 $\approx 96/\text{km} (\geq 560 \text{ mm})$

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573–683 mm

Mark-Recapture:

 $\approx 96/\text{km} (\geq 560 \text{ mm})$

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573–683 mm

Mark-Recapture:

 $\approx 96/\text{km} (\geq 560 \text{ mm})$

Consistent recruitment

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573-683 mm

Mark-Recapture:

 $\approx 96/\text{km} (\geq 560 \text{ mm})$

- Consistent recruitment
- Moderate annual mortality (0.33)

We captured <u>391</u> Shovelnose Sturgeon during 2016–2018 from <u>four study reaches</u> using a variety of sampling gears

Most Effective Gear:

Fall Trotlines

Sampling Biases:

75% 573-683 mm

Mark-Recapture:

 $\approx 96/\text{km} (\geq 560 \text{ mm})$

- Consistent recruitment
- Moderate annual mortality (0.33)
- Growth

Telemetry

Telemetry

Successfully tracked movements of 30 acoustic tagged fish

Telemetry

- Successfully tracked movements of 30 acoustic tagged fish
- 20 were never detected >15 km from their respective tagging reach

Telemetry

- Successfully tracked movements of 30 acoustic tagged fish
- 20 were never detected >15 km from their respective tagging reach
- Only 4 fish moved >100 km

Telemetry

- Successfully tracked movements of 30 acoustic tagged fish
- 20 were never detected >15 km from their respective tagging reach
- Only 4 fish moved >100 km

All significant (>15 km) upstream movements occurred during May or

June (spawning?)

Telemetry

- Successfully tracked movements of 30 acoustic tagged fish
- 20 were never detected >15 km from their respective tagging reach
- Only 4 fish moved >100 km

All significant (>15 km) upstream movements occurred during May or

June (spawning?)

Many fish exhibited site fidelity

Telemetry

- Successfully tracked movements of 30 acoustic tagged fish
- 20 were never detected >15 km from their respective tagging reach
- Only 4 fish moved >100 km
- All significant (>15 km) upstream movements occurred during May or June (spawning?)
- Many fish exhibited site fidelity
- Zero emigrated to the Mississippi River

Lots of data, more results than presented, if you have any questions please contact me.

Tony Sindt anthony.sindt@state.mn.us

Fish Art © MN DNR, C. Iverson

