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Abstract
A Fault Detection and Isolation (FDI) algorithm is developed to protect against
Water-Blockage (WB) pitot tube failure in the safety-critical Air Data System
(ADS) used on small Unmanned Aircraft Systems (UAS). The algorithm utilizes
two identical Synthetic Air Data Systems (SADS) as the basis for state estima-
tion. Each SADS works independently with a pitot tube while sharing an IMU
andGNSS receiver. The fault detection is designed using the integritymonitoring
framework, and the isolation is obtained via independent fault detection chan-
nels. The ADS requirements are established, and the WB failure mode is ana-
lyzed based on real faulty air data. A new residual-based test statistic is intro-
duced, and the link among the test statistic, observability matrix, and Minimal
Detectable Error (MDE) are examined. Finally, a flight data set with a known
water-blockage fault signature is used to assess the algorithm’s performance in
terms of the air data protection levels and alert limits.
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1 INTRODUCTION

A reliable Air Data System (ADS) plays a vital role in an
aircraft’s safety and performance. While ADS provides the
measurement of various parameters, airspeed 𝑉𝑎, angle-
of-attack 𝛼, and angle-of-sideslip 𝛽 are the main param-
eters that define the flight envelope. As shown in Fig-
ure 1, airspeed is the speed of an aircraft relative to the
air, and angle-of-attack and angle-of-sideslip are the flow
angles relative to the aircraft. Air data is usually measured
onboard by accurate air data sensors such as the pitot-
static tube and the angle vane. Also, reliability analyses
such as Fault Tree Analysis (FTA) and Failure Mode and
EffectAnalysis (FMEA) are oftenused to help identify fault
modes and certify the redundant hardware systems.
The analytical redundancy approach is particularly use-

ful for small Unmanned Aircraft Systems (UAS) due to the
Size, Weight, And Power (SWAP) requirements. However,

F IGURE 1 Illustration of air data triplet: airspeed 𝑉𝑎 ,
angle-of-attack 𝛼, and angle-of-sideslip 𝛽 [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

there is a lack of analytical methods to certify analytical
redundancy. As emerging technologies such as Urban Air
Mobility (UAM) (Vascik et al., 2018), or UAS operations
either in the Line-of-Sight (LOS) or Beyond Visual Line-
Of-Sight (BVLOS) (Cour-Harbo, 2017; Fang et al., 2018;
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Johnson et al., 2017; McCrink & Gregory, 2018; Yapp et al.,
2018) mature, the need for rigorous and certifiable analyt-
ical redundancy methods will increase. In these applica-
tions, ADS is one of the safety-critical subsystems which
needs to be certifiable and meet safety requirements.
Most of small UAS usually have one or two pitot tubes

as the only sensors in its ADS. For example, the recent
Part-135 certification process requires any unmanned air
carriers (i.e., package delivery) to have at least one heated
pitot tube (Federal Aviation Administration, 2019). How-
ever, many small UAS cannot afford to have a heated pitot
tube onboard due to its cost and power requirements.
Without the heating system, the low-cost pitot tubes on
many small Unmanned Aerial Vehicles (UAVs) are prone
to Water-Blockage (WB) faults. This is why many small
UAV operations, such as agricultural surveying and con-
struction inspection, cannot be carried out reliably during
the rainy days. In Figure 2, a typical inexpensive pitot tube
[10 US dollars to 20 US dollars (JDrones, 2020; Eagle Tree
Systems, 2020)] is shown. It can be seen that the pitot tube
is connected to a transducer via plastic tubes. The setup is
simple and used by many UAVs but prone to theWB faults
since there is no built-in drainage or heating system in the
pitot tube. Water can enter the pitot tube on flights during
foggy or rainy days, which fully or partially block the stag-
nation ports and affect the transducer’s pressure readings.
To improve the safety and reliability of the ADS and

minimize the number of redundant and multiple sensors,
one approach being considered is called a Synthetic Air
Data System (SADS) (Lie & Gebre-Egziabher, 2013; Sun
et al., 2019b). A SADS is an estimator that calculates air
data quantities using non-air data sensors such as the
GNSS, IMU, magnetometer, and mathematical model of
the aircraft.
SADS is a form of analytical redundancy that can help

detect and deal with faults in the traditional ADS of small
UAS. SADS can also potentially be coupled with one or
two air data sensors to resolve the low-reliability issue.
In fact, SADS has already been implemented in some

commercial aircraft such as the Boeing 787 (Austrailian
Transport Safety Bureau, 2015). The use of SADS is also
being considered by many other aircraft designs at this
time (Federal Democratic Republic of Ethiopia, Ministry
of Transport, Aircraft Accident Investigation Bureau, 2020;
Komite Nasional Keselamatan Transportasi, Republic of
Indonesia, 2018; SeekingAlpha, 2019).
In what follows, we give a brief overview of the prior

work on air data Fault Detection and Isolation (FDI) in
the literature. We also explain why the existing methods
are not adequate to certify ADS on small UAS and why the
IntegrityMonitoring (IM) framework can potentially solve
this problem.

1.1 Prior work

Air data FDI using advanced control and estimation algo-
rithms has renewed interest over the last decade due to
the recent advancements in the safety-critical UAV appli-
cations. These air data FDI techniques can be roughly sep-
arated into three categories: model-based, model-free, and
data-driven algorithms.
The model-based algorithms typically leverage the

dynamic model of the aircraft (Freeman et al., 2013;
Hansen & Blanke, 2014; Ossmann et al., 2017). For exam-
ple, Freeman et al. (2013) designed an airspeed fault detec-
tion algorithmusing the aerodynamicmodel of the aircraft
aswell as linear robust𝐻∞ filters to detect faults, reject dis-
turbance, and provide robustness to the modeling errors.
The model-free algorithms mainly rely on the sensor

information and the kinematic models of the vehicles
(Eubank et al., 2010; Guo et al., 2018; Lu et al., 2016; Van
Eykeren & Chu, 2014). The model-free algorithms also
often use Kalman Filter (KF)-based estimation techniques
and the innovation 𝜒2 test to determine faults. An illus-
trative example is shown in Lu et al. (2016). They use an
adaptive three-step unscented KF to detect and isolate air
data faults.

F IGURE 2 Entire ADS using a pitot-static tube, pressure tubes, and a pressure transducer for a small UAS [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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The data-driven algorithms primarily rely on large
amounts of data to develop reliable input-output meth-
ods (e.g., autoregressive models, neural networks). These
models are then used to detect faults through incon-
sistency check (Borup, 2018; Fravolini et al., 2017, 2018;
Rohloff et al., 1999).
These air data FDI algorithms are primarily concerned

with how to detect faults accurately, however, they do not
provide a framework for ensuring the reliability of the air
data fault detection algorithms from a requirement point
of view. That is, they do not address the following ques-
tion: Can we design an air data FDI algorithm to satisfy a
given set of system requirements such as integrity and conti-
nuity, and provide statistical protection levels for the air data
estimates?
Recent work (Freeman, 2014; Hu & Seiler, 2015;

Kotikalpudi et al., 2020) has made progress towards cer-
tification of analytically redundant systems via reliability
analysis. In the work here, we borrow tools often used in
the field of integrated GNSS navigation to help design air
data fault detection algorithms to ensure reliability.
One of the standard techniques for fault detection

of the safety-critical aerospace navigation systems is
called Receiver Autonomous IntegrityMonitoring (RAIM)
(Brown&Chin, 1998; Lee, 1986; Parkinson&Axelrad, 1988;
Sturza, 1988). RAIM methods are used for safety-critical
applications such as GNSS-based precision landing sys-
tems for aircraft (Khanafseh et al., 2014; Tan𝚤l et al., 2017a,
2017b; Walter et al., 2008) and have been the subject of a
significant amount of work for the last two decades. RAIM
methods have also been used recently to provide Integrity
Monitoring (IM) for other navigation systems such as the
Simultaneous Localization andMapping (SLAM) problem
(Arana et al., 2019a, 2019b; Bhamidipati & Gao, 2019).
The basic idea of RAIM is to leverage redundant

measurements at every time step [see snapshot detection
scheme (Brown & Chin, 1998; Parkinson & Axelrad, 1988;
Sturza, 1988)] or sequentially (Joerger & Pervan, 2013) to
come up with probabilistic measures to detect faults and
provide statistical bound to protect the state estimate. The
advantage of this approach is that it provides the means
for rigorous integrity risk computation. It uses redundant
measurements to achieve fault detection capability and
quantify the impact of undetected faults on state estima-
tion errors. Another advantage is that the calculation of
the threshold is based on probability, not selective tuning.
Unlike RAIM, in many of the aforementioned works, it
is often seen that a particular threshold is handpicked
for a given application without rigorous probabilistic
calculation.
However, the rigorous IM framework has not always

been implemented on emerging non-PNT applications.
This is partly due to the sensor measurements’ inhomo-

geneity or the non-linearity of dynamics in many applica-
tions such as UAS. Many systems, such as ADS, have lim-
ited redundant and heterogeneous measurements at every
time step. This limitation sometimesmakes the snapshot of
residual-based detection function infeasible to determine
faults. And while linearization errors are usually small in
the GNSS applications, measurement models in other sys-
tems are generally highly nonlinear, and the linearization
errors’ can be large. Therefore, the non-linearity might
have a significant effect on the existing IM techniques.
Lastly, many systems have observability issues [unobserv-
able states (Kassas & Humphreys, 2014) or conditionally
observable states (Sun et al., 2019b)], and this is usually
overlooked when dealing with IM in GNSS applications.
Another aspect of fault detection in IM is the selection

of an appropriate fault detector or test statistic. The goal
of a fault detector is to detect fault quickly without raising
too many false alarms. For real-time applications, online
fault detectors are preferred. There are many online fault
detectors such as the simple residual thresholding, KF
innovation 𝜒2 test, least-squares residual-based 𝜒2 test
[or commonly referred as the snapshot RAIM (Brown
& Chin, 1998; Parkinson & Axelrad, 1988; Sturza, 1988)
in navigation literature], Sequential Probability Ratio
(SPRT), Cumulative Sum (CUSUM) test, and Generalized
Likelihood Ratio (GLR) test.
Residual thresholding is the most straightforward test

as it only requires a threshold to determine whether the
data has exceeded the nominal level. TheKF innovation𝜒2
test is suitable for any KF-based state estimation, and the
least-squares residual-based 𝜒2 test is a good choice when
redundantmeasurements are available. The threemethods
mentioned above deal with linear or quadratic functions of
the residual.
On the other hand, both SPRT and CUSUM tests are

well-known for their nonlinear stopping rules (Gustafs-
son, 2000). For example, the standard one-sided SPRT test
requires three tuning parameters: drift 𝜈, threshold ℎ, and
reset level 𝑎. The basic idea of a one-sided SPRT test is to
test whether the test statistics have drifted away signifi-
cantly from the threshold. The drift parameter 𝜈 is used
to subtract from the test statistic to control the drift’s level,
and the parameter 𝑎 is used to prevent negative drift.
Similarly, the one-sided CUSUM test is the same as

the one-sided SPRT test with the reset level 𝑎 = 0. Sev-
eral variations of both SPRT and CUSUM tests can be
found in the literature. However, both tests require hand-
tuning for the desired outcome. The GLR is also a pow-
erful nonlinear test for fault detection, but it usually
requires the knowledge of Probability Density Functions
(PDF) under different hypotheses. In this paper, the KF-
based detectors will be utilized with some additional
novel improvement.
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1.2 Contribution

This paper provides four main contributions to the air
data FDI literature: First, we design a dual pitot tube air
data fault detection and isolation system that can be eas-
ily implemented on most UAVs. Second, we expand on
sequential IM techniques in the Kalman filter setting to
evaluate the integrity risk for the designed fault detec-
tion algorithm.
Specifically, we show how to deal with the limited

redundant measurement problem and establish an ana-
lytical relationship among the residual-based test statistic,
the Linear Time-Varying (LTV) observability matrix, and
the MinimumDetectable Error (MDE). We also show how
monitoring the observability of the system can potentially
help rule out false alarms. Furthermore, we generalize the
IM performance trade-off design procedure so that we can
use it to evaluate other pitot tube failure modes.
Third, we also show how to establish alert limits and

protection level bounds for the angle-of-attack and sideslip
states. Lastly, we demonstrate our algorithm’s capability
using a recorded flight data in which a known WB pitot
tube failure occurred.

1.3 Paper organization

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief description of the model-free SADS
estimator used for the dual pitot tube air data system
design developed in this paper. Section 3 presents the
air data system requirements needed for the fault algo-
rithm design. Section 4 describes the WB failure mode
used in this work. Section 5 presents the fault detection
design and analysis, which includes the derivation of the
residual-based test statistic and its relation to the observ-
ability matrix, the MDE design and analysis, and the IM
performance trade-off design procedure. Section 6 derives
the alert limits and protection level calculations of angle-
of-attack 𝛼 and sideslip 𝛽. Section 7 presents the flight
results and its associated detection performance. Conclud-
ing remarks and future outlook are given in Section 8.

2 DUAL PITOT TUBE AIR DATA
SYSTEMDESIGN

2.1 System architecture

For the development that follows, we propose a dual pitot
tube air data system for small UAS. The architecture con-
sists of two identical SADS estimates of 𝛼 and 𝛽 by fusing
airspeed measurements from the pitot tube with informa-

tion from an IMU and a GNSS receiver (Sun et al., 2018,
2019a, 2019b).
Each SADS utilizes its own pitot tube, but both SADS

share aGNSS receiver and IMU. Sharing theGNSS receiver
and IMU reduces cost and software complexity. The design
can be easily expanded to architecture with dual GNSS
receivers and IMU units.
Each SADS can detect faults independently (i.e., identify

and isolate the fault source) and is designed to satisfy the
given system performance requirements (i.e., integrity and
continuity requirements). The two SADS together provide
recovery capability for a single faulty pitot tube failure via
simple decision logic. This ADS system also provides accu-
rate estimates and protection levels for the synthetic angle-
of-attack 𝛼 and sideslip 𝛽. The entire dual ADS design is
illustrated graphically in Figure 3.

F IGURE 3 Dual air data fault detection design [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

In comparison to the commonly used triple-redundancy
ADS design (Yeh, 1996), the dual pitot tube fault-tolerant
ADS has a unique advantage: it only includes two small
and inexpensive pitot tubes by leveraging a so-called
dynamic redundancy approach (Isermann, 2005), which
can be easily installed on the UAVs. In the case of a single
pitot tube fault, the dual ADS can shut off the faulty pitot
tube and continue its nominal operation using the sec-
ondary pitot tube (sometimes referred to as a hot standby).
Additionally, the two independent SADS filters can be

implemented asynchronously on the hardware. It is amore
fault-tolerant design choice in comparison to other filter
methods [e.g., solution separation method (Joerger et al.,
2014)], which in this case would use both pitot tube mea-
surements simultaneously. Note that failure of a single
pitot tube would lead to potential loss of control even if
multiple filters (e.g., a bank of KF filters for various pitot
tube failure modes) were used. Though simultaneous fail-
ure of both pitot tubes could occur under the same rainy
condition, we considered that simultaneous-failure case
beyond the scope of this paper and can be considered in
future work. Table 1 summarizes the decision logic for the
dual pitot tube ADS fault detection design.
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TABLE 1 Dual Pitot tube ADS decision logic for each scenario

SAD-1 SAD-2 Decision
Scenario 1 Nominal Nominal Nominal operation
Scenario 2 Nominal Faulty Use SAD-1 and raise alarm
Scenario 3 Faulty Nominal Use SAD-2 and raise alarm
Scenario 4 Faulty Faulty Terminate mission and land

Since SADS is the one of key components in the pro-
posed algorithm, we will briefly go over some details to
facilitate the understanding in the next subsection. For
more details, please refer to Sun et al. (2019b).

2.2 Synthetic Air Data System (SADS)

The synthetic SADS estimator is an extension of the 15-
state, loosely-coupled INS/GNSS EKF (Gleason & Gebre-
Egizabher, 2009), which blends information from an IMU
and GNSS receiver. The INS/GNSS filter’s state vector
is augmented by three additional states representing the
components of the wind velocity vector. Therefore, the
SADS filter states, expressed in the error state vector 𝛿𝐱 ∈
ℝ18×1, is given by:

𝛿𝐱 =
[
𝛿𝐩𝑇 𝛿𝐯𝑛𝑇 𝛿𝝍𝑛𝑇

𝑛𝑏
𝛿𝐛𝑇𝑎 𝛿𝐛

𝑇
𝑔 𝛿𝐖

𝑛𝑇
]𝑇 (1)

where 𝛿𝐩 = [𝛿𝐿 𝛿𝜆 𝛿ℎ]𝑇 is the position error vector in
latitude, longitude, and altitude, 𝛿𝐯𝑛 = [𝛿𝑉𝑁 𝛿𝑉𝐸 𝛿𝑉𝐷]

𝑇

is velocity error vector resolved in the North-East-Down
(NED) frame, denoted by the superscript 𝑛. The vector
𝛿𝝍𝑛

𝑛𝑏
= [𝛿𝜙 𝛿𝜃 𝛿𝜓]𝑇 represents the attitude errors which

are defined to be the small rotation angles between the
actual NED frame and the estimated NED frame. The
subscript 𝑛𝑏 indicates the positive direction is defined as
being from the NED frame (n-frame) to the body frame (b-
frame). The vectors 𝛿𝐛𝑎 = [𝛿𝑏𝑎𝑥 𝛿𝑏𝑎𝑦 𝛿𝑏𝑎𝑧]

𝑇 and 𝛿𝐛𝑔 =
[𝛿𝑏𝑔𝑥 𝛿𝑏𝑔𝑦 𝛿𝑏𝑔𝑧]

𝑇 are the accelerometer and rate gyro
triad output bias error vectors, respectively. Finally, 𝛿𝐖𝑛 =

[𝛿𝑊𝑁 𝛿𝑊𝐸 𝛿𝑊𝐷]
𝑇 is the error in the wind velocity vector

resolved in the NED frame.
The synthetic SADS estimator synthesizes an estimate of

𝛼 and 𝛽 without using the 𝛼 and 𝛽 sensor measurements.
The synthetic estimates of 𝛼 and 𝛽 are calculated using the
EKF state estimates as follows:

𝛼 = tan−1
(𝑢
𝑣

)
, 𝛽 = sin

−1

(
𝑣√

𝑢2 + 𝑣2 + 𝑤2

)
(2)

where: [
𝑢 𝑣 𝑤

]𝑇
= 𝐂𝑏𝑛(𝝍

𝑛
𝑛𝑏
)[𝐯𝑛 −𝐖𝑛] (3)

The𝐂𝑏𝑛(𝝍𝑛𝑛𝑏) is the coordinate transformation fromNED
to the body frame. The measurement vector 𝐳 ∈ ℝ7×1,
shown in Equation (4), consists of position 𝐩 and velocity
𝐯𝑛 estimates from the GNSS receiver, along with the true
airspeed 𝑉𝑎 estimate determined using the pressure mea-
surements from the pitot tube.

𝐳𝑘 =
[
𝐩𝑇 𝐯𝑛𝑇 𝑉𝑎

]𝑇
𝑘

(4)

The time and covariance update equations for this fil-
ter are, for the most part, identical to those of the filter
described in Gleason and Gebre-Egizabher (2009). What is
new is the dynamicmodel for the augmented states (wind)
and the measurement model.
Similar to the modeling of the accelerometer and gyro-

scope biases in the filter, the dynamics of the wind are
modeled as a first-order Gauss-Markov model, motivated
by Berman and Powell (1998). The details of the Gauss-
Markov model for the wind and sensors can be found
in (Berman & Powell, 1998) and (Xing, 2010), respec-
tively. However, for the sake of completeness we re-state
the process noise matrix 𝐑𝑤 that accounts for accelerom-
eter, gyroscope, and wind, respectively, for a quick
reference:

𝐑𝑤 =

𝑑𝑖𝑎𝑔
([
𝜎2𝐰𝑎

𝜎2𝐰𝑔
2𝜎2𝐰𝑎𝑑

∕𝜏𝑎𝑑 2𝜎
2
𝐰𝑔𝑑

∕𝜏𝑔𝑑 2𝜎
2
𝐰𝑊𝑑

∕𝜏𝑊𝑑

])
∈ ℝ15×15 (5)

where 𝜎2𝐰𝑎
and 𝜎2𝐰𝑔

are the accelerometer and gyroscope
white noise variances, respectively. The parameter 𝜎2𝐰𝑎𝑑

,
𝜎2𝐰𝑔𝑑

, and𝜎2𝐰𝑊𝑑
are the accelerometer, gyroscope, andwind

randomwalk variances, respectively. The 𝜏𝑎𝑑, 𝜏𝑔𝑑, and 𝜏𝑊𝑑

are the associated time constants defined in the first-order
Markov process.
The linearized measurement model used by the EKF is

𝛿𝐳𝑘 = 𝐇𝑘𝛿𝐱𝑘 + 𝒗𝑘, where 𝒗𝑘, the measurement noise vec-
tor, is assumed to follow a normal distribution with zero
mean and covariance𝐑, denoted as𝑁(𝟎,𝐑). Themeasure-
ment Jacobian𝐇𝑘 ∈ ℝ7×18 is given by:

𝐇𝑘 =

⎡⎢⎢⎣
𝐈3 𝟎3 𝟎3×9 𝟎3
𝟎3 𝐈3 𝟎3×9 𝟎3
𝟎1 𝐻𝐯𝑛 𝟎1×9 𝐻𝐖𝑛

⎤⎥⎥⎦ (6)

where the first two block rows map the EKF states into
the GNSS position and velocity measurement errors, and
the last block row maps the EKF states into the air-
speed measurement error. The matrix𝐻𝐯𝑛 is derived from
linearizing the nonlinear airspeed measurement model



582 SUN and GEBRE-EGZIABHER

𝑉𝑎 = ||𝐯𝑛 −𝐖𝑛||2 + 𝑣𝑉𝑎 . The matrix 𝐻𝐖𝑛 is similarly
derived and happens to be equal to −𝐻𝐯𝑛 . The matrix𝐻𝐯𝑛

is shown in the following:

𝐻𝐯𝑛 =
1

𝑉𝑎

[
𝑉𝑁 −𝑊𝑁 𝑉𝐸 −𝑊𝐸 𝑉𝐷 −𝑊𝐷

]
(7)

The associated measurement noise covariance 𝐑 is
shown as follows:

𝐑 = 𝑑𝑖𝑎𝑔
([
𝜎2
𝑃𝑁

𝜎2
𝑃𝐸

𝜎2
𝑃𝐷

𝜎2
𝑉𝑁

𝜎2
𝑉𝐸

𝜎2
𝑉𝐷

𝜎2
𝑉𝑎

])
∈ ℝ7×7

(8)
where the diagonal of𝐑 contains the position, velocity, and
airspeed noise variances.

2.3 Observability consideration

An advantage of this SADS estimator is that it does not
use the aircraft dynamic model, and it provides synthetic
𝛼 and 𝛽 estimates as well as their covariances. Specifi-
cally, unlike the model-based SADS, which uses the aero-
dynamic model of the aircraft and six degree-of-freedom
dynamic equations, this mode-free SADS estimator only
relies on the kinematic equation and sensor measure-
ments. However, this estimator is conditionally observ-
able as analyzed in detail in Sun et al.’s earlier work
(2019b). Briefly, ensuring observability of this estimator
requires the following two conditions (i.e., conditionally
observable):

1. The airplanemust be accelerating so that the INS/GNSS
heading and gyro bias states become observable (Glea-
son & Gebre-Egizabher, 2009)

2. The wind vector 𝐖𝑛 must be quasi-static. The term
quasi-static means that the variations in 𝐖𝑛 are
assumed to be negligibly small over a small time win-
dow whose size is defined in (Sun et al., 2019b).

The second condition is required to ensure that chang-
ing airspeed and the wind states 𝐖𝑛 separately observ-
able (i.e., the wind triangle relationship). Furthermore,
the quality of estimates, in part, depends on the degree of
observability.
The degree of observability is determined quantita-

tively by analyzing the condition number of observability
Gramian in Sun et al. (2019b). Since the synthetic estimate
is conditionally observable, the ability to detect air data
system faults is also conditional. One of this paper’s key
contributions is to show how observability is related to the
fault test statistic, which is explained and demonstrated in
Sections 5 and 7, respectively.

3 AIR DATA SYSTEM REQUIREMENT

To quantify the air data fault detection performance, we
start with given system requirements, such as integrity risk
𝐼𝑟𝑒𝑞 and continuity risk 𝐶𝑟𝑒𝑞. The integrity risk is the prob-
ability that a hazardous fault goes undetected, and conti-
nuity risk is the probability that an alarm is issued about
the presence of a fault when in fact there is no fault. Math-
ematically, they are defined as (Pervan, 1996):

𝐼𝑟𝑒𝑞 ≜ 𝑃𝑀𝐷 +
∑
𝐷𝐹

𝑃(𝑀𝐼|𝐷𝐹)𝑃𝐷𝐹 (9)

𝐶𝑟𝑒𝑞 ≜ 𝑃𝐹𝐴 +
∑
𝐷𝐹

𝑃(𝑁𝐼|𝐷𝐹)𝑃𝐷𝐹 (10)

where 𝑃 is shorthand for probability of, and 𝑀𝐷, 𝐹𝐴,
𝐷𝐹, 𝑀𝐼, and 𝑁𝐼 stand for missed detection, false
alarm, detected failure, missed-identified failure, and non-
isolable failure, respectively.
Since the primary focus here is to deal with fault detec-

tion against pitot tube faults only, the second terms on
the right-hand side of Equations (9) and (10) are ignored.
These terms are associated with the isolation problem,
which deals with all possible fault modes associated with
the pitot tube.
In our case, we assume the pitot tube only experiences

one particular failure mode, so the fault detection and
isolation are essentially achieved at the same time. We
also rely on the simple decision logic (Table 1) to recover
from the faulty pitot tube experiencing the WB failure.
Therefore, we limit our scope to the following performance
requirement:

𝐼𝑟𝑒𝑞 ≈ 𝑃𝑀𝐷

= 𝑃(Pitot tube fault not sensed

|Pitot tube has failed due to WB) (11)

𝐶𝑟𝑒𝑞 ≈ 𝑃𝐹𝐴

= 𝑃(issuing an alarm|no pitot tube failure) (12)

As stated in Equations (11) and (12), the probability
of missed detection 𝑃𝑀𝐷 represents the probability of
not detecting a pitot tube failure given the pitot tube has
indeed failed. Similarly, the probability of false alarm
𝑃𝐹𝐴 is the probability of issuing an alarm when there is
no pitot tube failure. Also, if the pitot tube is working
properly, this hypothesis is denoted as𝐻0. If the pitot tube
is not working correctly, this hypothesis is denoted as 𝐻1.
The details of the particular WB pitot tube fault mode is
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analyzed in Section 4. Also, since currently there is no
universally accepted the numerical values of 𝐼𝑟𝑒𝑞 and 𝐶𝑟𝑒𝑞
for the WB pitot tube failure to our knowledge, we treat
them as the trade-off variables in the Section 5.

4 WATER BLOCKAGE FAILUREMODE

Asmentioned in Section 1, low-cost pitot tubes such as the
one shown in Figure 2 are susceptible to a failure model
called Water Blockage (WB) during foggy or rainy days.
This is a failure mode where the water particles in the air
can enter through the front of the pitot tube and accumu-
late, leading to a reduction in total pressure either slowly
or abruptly, as illustrated in Figure 4.

F IGURE 4 Illustration of the pitot static tube experiencing
WB fault scenario [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

The airspeed 𝑉𝑎 is typically calculated based on
Bernoulli’s principle as follows1:

𝑉𝑎 =

√
2(𝑃𝑡 − 𝑃𝑠)

𝜌
=

√
2Δ𝑃

𝜌
(13)

where 𝑃𝑡 is the stagnation or total pressure, 𝑃𝑠 is the
static pressure, and 𝜌 is the air density. A partially blocked
pitot tube would affect Δ𝑃, which often leads to an air-
speed drop. The size of the airspeed drop can vary sig-
nificantly based on how much water is clogging the pitot
tube.
Figure 5 shows a time history of two different faulty air-

speed data sets from two different UAVs. The first faulty
airspeed data (the top figure in Figure 5) comes from an
agricultural inspection experiment. The flight datawas col-
lected by Sentera LLC.
The UAV took off around 570 secs, but the airspeed

quickly decreased at 614 secs due to the WB faulty pitot

1 The temperature and altitude effect are not considered in this study

F IGURE 5 Two faulty airspeed data sets due to WB

tube. The other faulty airspeed data shown here2 is repro-
duced from Hansen & Blanke (2014). The airspeed expe-
riences a sharp drop at 2335 secs due to the water-clogged
pitot tube.
Even though two different UAVs operate at different

flight conditions (i.e., the nominal airspeed from the sec-
ond set is almost three times higher than the first one),
both pitot tubes experience a similar pressure drop rate.
Those two airspeed drops’ slope is estimated to be 2.5𝑚∕𝑠2
and 3𝑚∕𝑠2, respectively. Although this profile could be dif-
ferent from different pitot tubes, we will use them as the
fault profile from which we need protection for the illus-
tration in this paper.
Ideally, a larger faulty airspeed sample size would be

required to represent the WB faulty pitot tube fault char-
acteristics. However, it is difficult to obtain faulty airspeed
data due to the WB failure in flight since: 1) the precise
occurrence (i.e., timestamp) of the WB fault is usually
unknown, and 2) faulty airspeed data is sensitive informa-
tion and generally not shared in the public domain. In fact,
to the best of our knowledge, this is the first paper that uti-
lizes more than one set of faulty airspeed data due to the
WB failure mode.
The airspeed measurement model under the faulty

condition shown in Equation (14) is used for the SADS
estimator. The WB fault mode is modeled as an unknown
linear ramp fault, denoted as 𝑓𝑉𝑎 , and the nominal air-
speed is calculated by taking the euclidean norm (2-norm)
of the difference between the inertial velocity 𝐯𝑛 and
wind vector 𝐖𝑛 in the navigation frame. The airspeed
measurement noise 𝑣𝑉𝑎 is modeled as the white Gaussian
noise. The noise variance is typically unknown after the

2 The second airspeed data shown here is digitally extracted from the
paper for illustration
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fault occurs. Here we assume the noise variance stays the
same before and after the fault:

𝑉𝑎 = ||𝐯𝑛 −𝐖𝑛||2 + 𝑓𝑉𝑎 + 𝑣𝑉𝑎 (14)

Also, we assume the fault component 𝑓𝑉𝑎 affects the
nominal airspeed measurement continuously after water
clogs in the tube. In other words, the water is assumed to
stay in and continue clogging the pitot tube. A timeline for
the fault scenario is described in Figure 6.

F IGURE 6 Fault scenario: the green portion of the timeline is
fault-free section and the red is the faulted case [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

The fault vector 𝑓𝑉𝑎𝑘 starts entering at the time 𝑘 and
persists for future times. The test statistics developed in
Section 5 uses a sliding window of size 𝑞 to detect faults.
This sliding window moves forward into the red region as
time continues. Note that the sliding window would start
right away when the measurement update of the KF filter
reaches enough measurement for its detector. Hence the
fault will most likely fall into the sliding window since the
water blockage fault usually happens after the takeoff.
The methodology determining the minimum detectable

faulty component 𝑓𝑉𝑎 for the fault detection design is pre-
sented in Section 5. Theminimumdetectable airspeed fault
depends on various factors, such as themeasurement sam-
pling rate 𝑇𝑠, the sliding window size 𝑞 of the fault test
statistic, the integrity risk𝑃𝑀𝐷 , and continuity risk require-
ments 𝑃𝐹𝐴. An IM trade-off design procedure is also pre-
sented to show how various factors can affect the design
choice based on a given set of requirements.

5 FAULT DETECTION DESIGN AND
ANALYSIS

In this section, we first discuss the choice of Kalman fil-
ter based test statistics. Specifically, in addition to the con-
ventional innovation-based KF test statistic, we introduce
a sequential residual-based test statistic.We show how this
test statistic is related to the observability matrix. Second,
we discuss how the test statistics are generally designed to
meet the integrity requirements.

The Minimum Detector Error (MDE) metric is used to
link the integrity requirements and the specific air data sys-
tem requirements. TheMDEmetric is determined through
the Detector Operating Characteristic (DOC) curves. We
also provide a general design procedure to determine the
acceptable MDE and detection time 𝜏 for different failure
modes. Lastly, we examine the quality of the proposed KF
residual-based test statistic through the MDE analysis.

5.1 Kalman filter based test statistics

Since the fault detection design in this paper relies on
the Kalman filter based estimation, both innovation and
least-squares residual-based 𝜒2 tests are considered for the
fault detector design. Kalman filter based test statistics are
widely used in the field of GNSS applications.

5.1.1 Innovation-based test statistic

The most popular method is called the normalized inno-
vation squared 𝜒2 test (Bar-Shalom et al., 2002). It uses the
innovation vector and its covariance to form a test statis-
tic, which follows a central 𝜒2 distribution with Df = 𝑚𝑞

under the fault-free hypothesis𝐻0 as shown below:

𝐷𝜸,𝑘|𝐻0 =

𝑘∑
𝑗=𝑘−𝑞+1

𝜸𝑇
𝑗
𝐒−1
𝑗
𝜸𝑗 ∼ 𝜒2(𝑚𝑞) (15)

where 𝐷𝜸,𝑘 is test statistic at the time step 𝑘, 𝜸𝑘 is the
innovation vector calculated using 𝜸𝑘 = 𝒛𝑘 − 𝒉(𝒙̂−

𝑘
), the

matrix 𝑺𝑘 is the innovation covariance calculated from
𝑯𝑘𝑷

−
𝑘
𝑯𝑇
𝑘
+ 𝑹𝑘, 𝑚 the number of measurements at the

time step 𝑘, and 𝑞 is the sliding window size. The vector
𝒙̂−
𝑘
is the predicted estimate, and 𝑷−

𝑘
is the covariance of

the KF prediction.
A suitable threshold for this test can be computed by

using the inverse chi-square cdf 𝐹−1
𝜒2

given the desired
probability of false alarmand the appropriateDf as follows:

𝑇𝜸 = 𝐹−1
𝜒2
(1 − 𝑃𝐹𝐴,Df) = 𝐹−1

𝜒2
(1 − 𝑃𝐹𝐴,𝑚𝑞) (16)

The innovation-based test statistic’s effectiveness
depends on the quality of the KF-predicted estimates
(linear prediction), KF measurements (sensor quality),
and length of 𝑞. However, one weakness of the innovation-
based test statistic is that it cannot be analyzed easily
if there is a fault. This is because all the information
embedded in the innovation vector and its covariance,
and the contribution from a fault cannot be parsed out
analytically. In other words, it would be more beneficial
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if we could find a test statistic that is both analyzable
and informative.

5.1.2 Residual-based test statistic

The other common fault detector for KF-based estima-
tion is the least-squares residual-based 𝜒2 test. However,
the residual-based 𝜒2 test is not applicable to the SADS
considered here because there is no redundant airspeed
measurement at every time step; past measurements will
be required for the fault detection design instead of using
the well-established snapshot RAIMmethod. To overcome
this issue, we formulate a KF residual-based test in the fol-
lowing:

𝐷𝐫,𝑘|𝐻0 = 𝐫𝑇
𝑘−𝑞∶𝑘

𝚺−1𝐫𝑘−𝑞∶𝑘 ∼ 𝜒2(𝑚𝑞 − 𝑛) (17)

where 𝑛 is the number of the states in the KF and
𝐫𝑘−𝑞∶𝑘 is stacked residual vector from the past time step
𝑘 − 𝑞 to the current time step 𝑘, denoted as 𝐫𝑘−𝑞∶𝑘 =[
𝐫𝐓
𝐤−𝐪

𝐫𝑇
𝑘−𝑞+1

… 𝐫𝑇
𝑘

]𝑇
. Each residual 𝐫𝑘 is computed from

the difference between the measurements and a posteri-
ori estimate 𝒙+

𝑘
using 𝐫𝑘 = 𝒛𝑘 − 𝒉(𝒙̂+

𝑘
). The matrix 𝚺 is

the covariance matrix of the weighted least residual vector
𝐫𝑘−𝑞∶𝑘 is shown in Equation (18):

𝚺 = 𝐈𝑞×𝑞 ⊗ 𝐑 + 𝐐𝑤,𝑘−𝑞∶𝑘(𝐈𝑞×𝑞 ⊗ 𝐑𝑤)𝐐
𝑇
𝑤,𝑘−𝑞∶𝑘

(18)

where⊗ is theKronecker tensor product and𝐑𝑤 is the pro-
cess noise matrix. The matrix 𝐐𝑇

𝑤,𝑘−𝑞∶𝑘
is realized through

the batch linear system realization shown in Appendix A.
The sliding window residual-based test statistic is used
here instead of a one-time step residual test because the
number of measurements 𝑚 is less than the number of
states 𝑛 for the SADS.
In other words, the popular snapshot RAIM method

from GNSS does not work here since no redundant
measurements are available at each time step. The
𝜒2 test requires Df = 𝑚𝑞 − 𝑛 > 0, therefore the thresh-
old for the residual-based test statistic is calculated as
follows:

𝑇𝐫 = 𝐹−1
𝜒2
(1 − 𝑃𝐹𝐴,Df) = 𝐹−1

𝜒2
(1 − 𝑃𝐹𝐴,𝑚𝑞 − 𝑛) (19)

The sequential residual-based 𝜒2 fault detection test
statistic has similar properties to the snapshot RAIM
method. Also, we make a connection between this
residual-based test statistic and the LTV observability
matrix. This is done by connecting a window of mea-
surement to a past state vector 𝒙𝑘−𝑞 using weighted least

squares. The state vector 𝒙𝑘−𝑞 can be estimated by apply-
ing weighted linear least squares to the batch linear system
shown in Equation (A2):

𝒙̂𝑘−𝑞 = 
∗
𝑘−𝑞∶𝑘𝐙𝑘−𝑞∶𝑘 = 𝒙̂+

𝑘−𝑞
(20)

where 𝒙̂+
𝑘−𝑞

signifies the posteriori estimate from the past
measurement from time step 𝑘 − 𝑞 to the currentmeasure-
ment 𝑘. The matrix ∗

𝑘−𝑞∶𝑘 is calculated as:


∗
𝑘−𝑞∶𝑘 = (

𝑇
𝑘−𝑞∶𝑘𝚺

−1
𝑘−𝑞∶𝑘)

−1

𝑇
𝑘−𝑞∶𝑘𝚺

−1 (21)

where 𝑘−𝑞∶𝑘 is the LTV observability matrix shown in
Equation (A7). The residual vector 𝐫𝑘−𝑞∶𝑘 can be subse-
quently expressed in the following:

𝐫𝑘−𝑞∶𝑘 =

⎡⎢⎢⎢⎢⎣
𝐫𝐤−𝐪
𝐫𝑘−𝑞+1
⋮

𝐫𝑘

⎤⎥⎥⎥⎥⎦
= (𝐈𝑚𝑞×𝑚𝑞 −𝑘−𝑞∶𝑘

∗
𝑘−𝑞∶𝑘)𝐙𝑘−𝑞∶𝑘

(22)

Under the fault-free 𝐻0 hypothesis, we can also write
𝐫𝑘−𝑞∶𝑘 as follows:

𝐫𝑘−𝑞∶𝑘 = (𝐈𝑚𝑞×𝑚𝑞 −𝑘−𝑞∶𝑘
∗
𝑘−𝑞∶𝑘)

[
𝐐𝑤,𝑘−𝑞∶𝑘𝐖𝑘−𝑞∶𝑘 + 𝐕𝑘−𝑞∶𝑘

]
(23)

where 𝐫𝑘−𝑞∶𝑘 follows a normal distribution 𝑁(𝟎, 𝚺), and
𝐖𝑘−𝑞∶𝑘 and 𝐕𝑘−𝑞∶𝑘 are defined in Equation (A4) and (A5)
respectively.
Using Equation (22), we can also write 𝐷𝐫,𝑘 as follows:

𝐷𝐫,𝑘 = 𝐫𝑇
𝑘−𝑞∶𝑘

𝚺−1𝐫𝑘−𝑞∶𝑘

= 𝐙𝑇(𝐈 −
∗
)𝑇𝚺−1(𝐈 −

∗
)𝐙

= 𝐙𝑇𝚺−1(𝐈 −
∗
)𝐙

(24)

where the subscripts 𝑚𝑞 ×𝑚𝑞 and 𝑘 − 𝑞∶𝑘 are dropped
to shorten the notation. The last equality of Equation (24)
is obtained because both 𝚺−1 and 𝚺−1(𝐈 −

∗
) are sym-

metric, and the matrix 𝐈 −
∗ is idempotent. The formal

proof of this matrix equality is given in Appendix B.
The mathematical revelation in Equation (24) shows

that the KF residual-based test statistic is a function
of the observability matrix. Furthermore, the matrix

𝑇
𝚺−1 inside of ∗ is the discrete weighted observabil-

ity Gramian or the Fisher informationmatrix (Bar-Shalom
et al., 2002).
This test statistic has a distinct advantage: it gives

users a tool to analyze how the system’s observability
affects the test statistic 𝐷𝐫,𝑘 given a sliding window of the
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measurement from time step 𝑘-𝑞 to 𝑘. By analyzing the
observability Gramian, we can tell how well the cur-
rent system is observable. We can make useful statements
between the effect of the test statistic and the motion
of the vehicle (indirectly represented by the observability
matrix). Furthermore, it can also be used to eliminate false
alarms, as demonstrated in Section 7. Hence, we also call
this test statistic the observability-based test statistic.

5.1.3 Limitation of snapshot RAIM test
statistic

It is worth noting that the test statistic in Equation
(24) is different from the well-known RAIM-like∑𝑘

𝑗=𝑘−𝑞+1
𝐫𝑇
𝑗
𝐑−1
𝑗
𝐫𝑗 =

∑𝑘

𝑗=𝑘−𝑞+1
𝒛𝑇
𝑗
𝐑−1
𝑗
(𝐼 − 𝐇𝑗𝐇

∗
𝑗
)𝒛𝑗

test statistic, which also follows a central 𝜒2 with degrees-
of-freedom𝑚𝑞 − 𝑛 under𝐻0 hypothesis.
This test statistic does not account for the process noise

from the time update step in the KF prediction step. It loses
all the dynamic information between theKFmeasurement
update. Again, though the snapshot 𝐫𝑇

𝑘
𝐑−1
𝑘
𝐫𝑘 test statis-

tic is often used for GNSS integrity monitoring, it is inap-
plicable when dealing with the system considered here
which does not have redundancy measurements at each
time step.

5.2 MinimumDetectable Error (MDE)
design

Before we proceed with determining the Minimum Detec-
tor Error (MDE), we will discuss some concepts and define
some terms thatwill be used later. Any fault detection algo-
rithm’s goal is to detect credible faults before they lead a
hazardous situation (e.g., loss of the aircraft, collision with
terrain).
For a given UAV, the stall angle of attack 𝛼𝑠𝑡𝑎𝑙𝑙 and the

minimum airspeed at which the airplane can fly 𝑉𝑎,𝑠𝑡𝑎𝑙𝑙
(stall speed) are synonymous. We will assume we are deal-
ing with an electrically powered UAV, so its mass does not
change during flight. Thus, the flight detection algorithm
we design will have to detect faults before the estimated
airspeed falls below 𝑉𝑎,𝑠𝑡𝑎𝑙𝑙.
Since the UAV’s operating speed𝑉𝑎 is generally not con-

stant during a given flight, the allowed drop in the estimate
of airspeed (before the airplane is outside of the safe-flight
envelope) is not constant either. To simplify the design, we
use the average operating speed 𝑉𝑎 as an approximation.
We will call the difference between average operating air-
speed 𝑉𝑎 and 𝑉𝑎,𝑠𝑡𝑎𝑙𝑙 the airspeed Allowable Error, or AE
for short.

Given a WB-fault profile, we can determine the time
required for the airspeed estimate to drop below the stall
speed. We call this 𝜏𝑚𝑎𝑥, and the fault detection algorithm
must detect a WB fault in a time shorter than 𝜏𝑚𝑎𝑥.
Finally, we call the smallest airspeed estimation error

that can be detected consistently (quantified by the missed
detection and false alarm rate probabilities) the MDE.
The fault detection algorithm ensures that MDE< AE and
raises the alarm when the detection time less than 𝜏𝑚𝑎𝑥
after the onset of a pitot tube failure.

5.2.1 MDE and 𝜏𝑚𝑎𝑥 determination

By examining the slope of the faulty airspeed data in Fig-
ure 5, it is determined that the minimum faulty airspeed
drop rate is about 2.5 𝑚∕𝑠2. For the particular UAV used
in the flight experiment, the average operating airspeed is
about 17.5 𝑚∕𝑠, and the stall speed is about 10 𝑚∕𝑠. The
difference 7.5𝑚∕𝑠 between𝑉𝑎 and𝑉𝑎,𝑠𝑡𝑎𝑙𝑙 translates to the
maximum detection time 𝜏𝑚𝑎𝑥 = 3𝑠 as follows:

𝜏𝑚𝑎𝑥 =
AE
2.5

=
𝑉𝑎 − 𝑉𝑎,𝑠𝑡𝑎𝑙𝑙

2.5
=
17.5 − 10

2.5
= 3𝑠 (25)

If the fault detection algorithm fails to detect the fault
before the fault exceeds AE, then the algorithm is inef-
fective against the allowable fault. Mathematically, the AE
should satisfy the following:

MDE(𝑃𝐹𝐴, 𝑃𝑀𝐷) ≤ AE(𝑉̄𝑎, 𝑉𝑎,𝑠𝑡𝑎𝑙𝑙, 𝜏𝑚𝑎𝑥) (26)

where the lower boundMDE is a function of 𝑃𝐹𝐴 and 𝑃𝑀𝐷 .
TheAE = 7.5m/s is reasonable, but a tight bound since the
UAV should be able to recover even if the airspeed drops
below the stall speed as long as there is a sufficient alti-
tude for recovery. Hence, a larger AE can be found based
on the average operating altitude.Nevertheless, wewill use
7.5m/s as the upper bound forAE in the following analysis.

5.2.2 MDE and sampling rate

Wemodel the airspeed fault as a linear ramp fault using the
minimum drop rate of 2.5𝑚∕𝑠2. The fault detector should
still catch any rate that is higher 2.5 𝑚∕𝑠2 since a larger
fault would result in a quicker detection.
Since 𝜒2 based tests are used for the fault detection,

one of the requirements for 𝜒2 test is that the degree-of-
freedom (Df) has to be greater than zero. For example,
the least-squares residual-based fault detection method
(Brown & Chin, 1998) requires the number of the mea-
surement 𝑚 to be greater than the state 𝑛. Because we
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F IGURE 7 Simulated airspeed linear
ramp fault profile at two different sampling
rates [Color figure can be viewed in the
online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

are doing sequential measurement update for the airspeed
(i.e., 𝑚 = 1 at each time step 𝑘) and we only assume the
fault comes from the pitot tube, the minimum number of
airspeed measurements needed for the residual-based 𝜒2
test is 19 since the number of states is 18.
Therefore, we need to collect at least 19 airspeed mea-

surements (i.e., sliding window size 𝑞 = 19) to detect fault
within the maximum allowable detection time. Sampling
too fast would also degrade the KF’s performance because
measurements closely spaced in time would cause the
innovation vector to be highly correlated with itself, which
violates the uncorrelatedness assumption.
Figure 7 shows the simulated airspeed linear ramp fault

profiles at 1 𝑠 and 0.08 𝑠 sampling time over 3 s using the
2.5 𝑚∕𝑠 airspeed drop rate. The sampling time 𝑇𝑠 = 1 𝑠

might be too slow for detection as the number of faulted
measurement is too small for detection test statistic to
respond before the time exceeds 𝜏𝑚𝑎𝑥.
On the other hand, the sampling time 𝑇𝑠 = 0.08 𝑠 is suf-

ficient even if we only use themeasurements after the fault
occurs to form the test statistic3. Therefore, an appropriate
sampling time should be chosen for the airspeed measure-
ment based on the AE and themeasurement uncorrelated-
ness assumption.

3 Since a sliding window ofmeasurement is used, the test statistics always
has enough nominal measurements for 𝜒2 test before the fault occurs.
If the faulty measurement enters the sliding window too slowly, the test
statistics can be ineffective

For the small UAV we are dealing with here, the sam-
pling time 𝑇𝑠 = 0.08 𝑠 is found to be effective for good esti-
mation and detection performance.

5.2.3 MDE and detector operating
characteristic curves

A Detector Operating Characteristic (DOC) curve (Sturza,
1988) is a graphical plot that illustrates the power of a
discrimination threshold given various fault modes. It is
used to understand the trade-off between the false alarm
and missed detection rate, and the effectiveness of the
designed threshold.
The DOC curves are obtained by plotting various 𝑃𝑀𝐷

and 𝑃𝐹𝐴 at different fault sizes. The DOC is the simi-
lar to the Receiver Operating Characteristic (ROC) curve,
except the y-axis of ROC is the probability of detection 𝑃𝐷
(𝑃𝐷 + 𝑃𝑀𝐷 = 1). Mathematically, the DOC curve is calcu-
lated using Equation (27):

𝑃𝑀𝐷 = 𝐹𝜒2(𝜆)(𝑇,Df) = 𝐹𝜒2(𝜆)

(
𝐹−1
𝜒2
(1 − 𝑃𝐹𝐴,Df),Df

)
(27)

where 𝑇 is the designed threshold and determined by 𝑃𝐹𝐴.
The functions 𝐹𝜒2 and 𝐹𝜒2(𝜆) are central and non-central
𝜒2 CumulativeDistributionFunctions (CDF), respectively,
with Df degrees-of-freedom. The non-centrality parameter
𝜆 represents the sum of the non-zero means. In this case,
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it is sum of the biases vectors 𝑓𝑉𝑎 over the sliding window
𝑞, as shown below:

𝜆 =

𝑘∑
𝑗=𝑘−𝑞+1

𝑓2
𝑉𝑎𝑗

𝜎2
𝑉𝑎𝑗

(28)

The expression for 𝜆 here is greatly simplified due to
the sequential measurement update procedure. In the next
subsection, we will generalize 𝜆 expression for dealing
with various inhomogeneous measurements under the
standard KF measurement update setting.
We use measurements over a short period for 𝜆 instead

of a single measurement. Not only does this satisfy the Df
requirement as mentioned earlier, but also a single faulty
measurement may be ineffective. For example, if we wait
until the fault grows to 7.5 𝑚∕𝑠 at 3 seconds, and use this
measurement to form the test statistic (e.g., the innovation-
based 𝜒2 test statistic only requires one measurement at
minimum), then it would be too late in issuing the alarm.
Hence we accumulate measurements over a short period
and use them to form the detection test statistic.
For a fixed size sliding window 𝑞, 𝜆 can be calculated

using a sliding window of the normalized 𝑓2
𝑉𝑎𝑗

∕𝜎2
𝑉𝑎𝑗

from
the past time step 𝑘 − 𝑞 + 1 to the current time step 𝑘. We
define two parameters MDE and MDE in Equations (29)
and (30):

MDE ≜
√
𝜆 =

√√√√√ 𝑘∑
𝑗=𝑘−𝑞+1

𝑓2
𝑉𝑎𝑗

𝜎2
𝑉𝑎𝑗

(29)

MDE ≜ 𝑚𝑎𝑥
(
𝑓𝑉𝑎𝑘−𝑞+1 , 𝑓𝑉𝑎𝑘−𝑞+2 , … 𝑓𝑉𝑎𝑘−1 , 𝑓𝑉𝑎𝑘

)
= 𝑓𝑉𝑎𝑘

= 𝑓𝑉𝑎𝑚𝑎𝑥 (30)

where MDE is the square root of the sum of normalized
fault vectors and MDE the represents the magnitude of
the largest fault in the sliding window. The definition of
MDE is compatible with the one mentioned in Equation
(26) because it represents themaximum tolerable fault size
in the sliding window.
Figure 8 shows MDE using a window size 𝑞 = 19 and

a constant 𝜎𝑉𝑎 = 1.75 m/s. Each stem represents the sum
of the past 19 normalized faulty measurements at sampled
time 𝑘, where each faulty measurement is simulated based
on the linear ramp fault profile shown in the bottom sub-
figure of Figure 7. TheMDE represents the sum of the past
normalized faulty measurements.
Figure 9 shows theDOC contour plot for a single degree-

of-freedom: Df = 𝑚𝑞 − 𝑛 = 1 × 19 − 18 = 1. The plot is
created by sweeping different 𝜆 over a wide range of 𝑃𝐹𝐴
and 𝑃𝑀𝐷 . The contour color is represented by the largest

F IGURE 8 MDE over 3 secs period using the linear ramp fault
profile in Figure 7 [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 9 DOC curves where the color represents the
associated MDE [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

minimum detectable airspeed error 𝑓𝑉𝑎𝑚𝑎𝑥 in the slid-
ing window.
If the red dot represents a design choice (𝑃𝐹𝐴, 𝑃𝑀𝐷) =

(10−5, 10−4), the minimum detectable error requirement
MDE is 5.0 m/s, which satisfies the inequality in Equation
(26). In other words, the fault detection algorithm can
detect the airspeed fault 𝑓𝑉𝑎 after it reaches 5.0 m/s,
which corresponds to a detection time 𝜏 = 2 𝑠 starting
from the beginning of the fault profile shown in the
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TABLE 2 The sliding window MDE (𝑚∕𝑠) and its associated MDE (𝑚∕𝑠) in the square bracket for Df = 1

𝑷𝑭𝑨∕𝑷𝑴𝑫 𝟏𝟎−𝟏 𝟏𝟎−𝟐 𝟏𝟎−𝟑 𝟏𝟎−𝟒 𝟏𝟎−𝟓 𝟏𝟎−𝟔 𝟏𝟎−𝟕 𝟏𝟎−𝟖 𝟏𝟎−𝟗

10−1 2.93 [3.6] 3.97 [3.6] 4.74 [3.6] 5.36 [3.8] 5.91 [4.0] 6.40 [4.2] 6.84 [4.4] 7.26 [4.6] 7.64 [4.8]
10−2 3.86 [3.6] 4.90 [3.6] 5.67 [3.8] 6.29 [4.2] 6.84 [4.4] 7.33 [4.6] 7.78 [4.8] 8.19 [5.0] 8.57 [5.2]
10−3 4.57 [3.6] 5.61 [3.8] 6.38 [4.2] 7.01 [4.4] 7.56 [4.8] 8.04 [5.0] 8.49 [5.2] 8.90 [5.4] 9.29 [5.4]
10−4 5.17 [3.6] 6.22 [4.2] 6.98 [4.4] 7.61 [4.8] 8.16 [5.0] 8.64 [5.2] 9.10 [5.4] 9.51 [5.6] 9.89 [5.8]
10−5 5.70 [4.0] 6.74 [4.4] 7.51 [4.8] 8.14 [5.0] 8.68 [5.2] 9.17 [5.4] 9.62 [5.6] 10.03 [5.8] 10.41 [6.0]
10−6 6.17 [4.2] 7.22 [4.6] 7.98 [5.0] 8.61 [5.2] 9.16 [5.4] 9.65 [5.6] 10.10 [5.8] 10.51 [6.0] 10.89 [6.2]
10−7 6.61 [4.4] 7.75 [4.8] 8.42 [5.0] 9.04 [5.4] 9.59 [5.6] 10.08 [5.8] 10.53 [6.0] 10.94 [6.2] 11.32 [6.4]
10−8 7.01 [4.4] 8.06 [5.0] 8.82 [5.2] 9.45 [5.6] 9.99 [5.8] 10.48 [6.0] 10.93 [6.2] 11.34 [6.4] 11.73 [6.4]
10−9 7.39 [4.6] 8.44 [5.2] 9.20 [5.4] 9.83 [5.6] 10.37 [6.0] 10.86 [6.2] 11.31 [6.4] 11.72 [6.4] 12.11 [6.6]

bottom sub-figure in Figure 7. Both of those numbers
satisfy the given constraint as follows:

MDE = 5𝑚∕𝑠 ≤ 7.5𝑚∕𝑠 = AE

𝜏 = 2𝑠 ≤ 3𝑠 = 𝜏𝑚𝑎𝑥

(31)

Of course, this is an ideal situation given the 𝜒2 test
statistic is assumed to come from a perfect zero mean, unit
variance white sequences. Nevertheless, the analysis pro-
vides a systematicway of assessing the fault detection capa-
bility for a realistic ramp airspeed fault profile.
Table 2 shows both MDE and MDE values over range

of 𝑃𝐹𝐴 and 𝑃𝑀𝐷 . The numbers in the square bracket are
the corresponding MDE values. It is seen that the MDE
decreases as 𝑃𝐹𝐴 and 𝑃𝑀𝐷 increase and vice versa. This
trend is correct and intuitive because a more stringent
integrity and continuity requirement would enforce the
detection function to catch a fault reliably at a larger MDE
since a larger airspeed fault would trigger the detection
function to cross the threshold more easily.
The final sliding window size was chosen to be 19 for

both detectors. The sensitivity analysis is done for differ-
ent sliding window sizes, and it is observed that increasing
𝑞 from the minimumwindow size (i.e., 19) does not signif-
icantly change the DOC curves. Also, too big of a window
sizewouldmake the test statistic function sluggish because
it tends not to respond slower than the latest change in
the measurement.

5.2.4 Trade-off analysis procedure

The above subsections complete the determination of
the MDE design based on the integrity requirements
(𝐼𝑟𝑒𝑞, 𝐶𝑟𝑒𝑞) and physical air data system requirement
(𝐴𝐸, 𝜏𝑚𝑎𝑥). Our MDE design can also be used for different
pitot tube failure modes (e.g,. stuck or oscillatory fault).
Note that analyzing a complete set of pitot tube failure
modes would make theMDE calculation statistically more

reliable, which is the subject of future studies. In what
follows, we summarize the necessary IM performance
trade-off design procedures:

1. Determine a suitable sampling rate for the measure-
ment

2. Determine a reasonable AE based on the realistic fault
mode profile (e.g., constant, ramp, or oscillatory)

3. Determine a feasible set of requirements 𝐼𝑟𝑒𝑞 and 𝐶𝑟𝑒𝑞
that satisfies the constraint in Equation (26) using DOC
curves

4. If 𝐼𝑟𝑒𝑞 and 𝐶𝑟𝑒𝑞 are satisfied, then record the MDE and
𝜏 for assessing the fault detection performance

5. If 𝐼𝑟𝑒𝑞 and 𝐶𝑟𝑒𝑞 are not satisfied, return step 3. If the
pair (𝐼𝑟𝑒𝑞, 𝐶𝑟𝑒𝑞) is given as a hard requirement, then AE
needs to be relaxed (return step 1)

5.2.5 Important trade-off factors

The design procedure is also presented in a flowchart
shown in Figure 10. It can be seen that when MDE and 𝜏
requirements are not satisfied, either performance require-
ments 𝐼𝑟𝑒𝑞 and 𝐶𝑟𝑒𝑞 are needed to be redefined, or AE and
𝜏𝑚𝑎𝑥 are needed to be re-adjusted. We also list the essen-
tial trade-off factors and their relationships that need to be
considered for the IM performance trade-off design:

1. Sampling time versus auto-correlation
2. Effectiveness of test statistics versus sliding window

size
3. System performance requirements (𝐼𝑟𝑒𝑞, 𝐶𝑟𝑒𝑞) versus

maximum allowable operating conditions (AE, 𝜏𝑚𝑎𝑥)
4. Sliding window size versus maximum allowable oper-

ating conditions (AE, 𝜏𝑚𝑎𝑥)

These variables are closely interconnected, and ulti-
mately we need to find a set of (AE, 𝜏𝑚𝑎𝑥) that is suit-
able for the given requirements (𝐼𝑟𝑒𝑞, 𝐶𝑟𝑒𝑞). The choice of
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F IGURE 10 Trade-off design procedure [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

(AE, 𝜏𝑚𝑎𝑥) would largely depend on the size of the slid-
ing window, effectiveness of the chosen detectors (or test
statistics), and sampling rate.
The fundamental limitation of change detection is

that the design is a compromise between detecting true
changes and avoiding false alarms. A poor design gives
either a slow filter (no alarm from the test statistic) or
a fast filter (many false alarms), and that is the worst
can happen.

5.3 MDE analysis for KF residual-based
test statistic

The quality of a test statistic is often determined by its
MDE (Grosch et al., 2017; Sturza, 1988). As demonstrated
in Section 5.2.3, given a set of (𝑃𝐹𝐴, 𝑃𝑀𝐷), the MDE (e.g.,
additive bias) can be found. The MDE informs us of the
limits of the fault detection capability. In this section, we
show the general expression ofMDE for the residual-based
test statistic. First, we can express 𝐫𝑘−𝑞∶𝑘 under the faulty
𝐻1 hypothesis:

𝐫𝑘−𝑞∶𝑘 = (𝐈 −
∗
)[𝐐𝑤𝐖+𝐕 + 𝐅] (32)

where 𝐅 contains at most 𝑞 steps since the start of the fault
as defined in Equation (A6). 𝐅 is the fault vector used to
represent faults for different types of measurements. If we
use both GNSS and airspeed measurement to update KF

at the same time, then 𝐅 can contain at most𝑚𝑞 non-zero
values. In this case, since the only faulty measurement
is assumed to come from the pitot tube, we can further
extract the faulty vector and maintain the correct matrix
size by applying a column vector 𝐄7:

𝐫𝑘−𝑞∶𝑘 = (𝐈 −
∗
)
[
𝐐𝑤𝐖+𝐕 + (𝐄𝑇7𝐅)𝐄7

]
(33)

where 𝐄7 = [𝒆𝑇7 𝒆𝑇7 … 𝒆𝑇7 ]
𝑇 ∈ ℝ7𝑞×1. The unit vector

𝐞7 is used because the airspeed measurement is on the
seventh row shown in Equation (4). The size of 𝐈 is now
7𝑞 × 7𝑞. Then, the expectation of the residual 𝐫𝑘−𝑞∶𝑘
is calculated as follows since 𝔼[𝐖] and 𝔼[𝐕] are zero
respectively:

𝔼
[
𝐫𝑘−𝑞∶𝑘

]
= (𝐈 −

∗
)(𝐄𝑇7 𝐅)𝐄7 (34)

Under the faulted hypothesis𝐻1, the residual-based test
statistic follows a non-central𝜒2 distributionwithDf equal
to𝑚𝑞 − 𝑛:

𝐷𝐫,𝑘|𝐻1 ∼ 𝜒2
(𝜆)
(𝑚𝑞 − 𝑛) (35)

The non-centrality parameter 𝜆 can be computed as:

𝜆 = 𝔼
[
𝐫𝑇
𝑘−𝑞∶𝑘

𝚺−1𝐫𝑘−𝑞∶𝑘

]
= 𝐄7𝐅

𝑇𝐄𝑇7 (𝐈 −
∗
)𝑇𝚺−1(𝐈 −

∗
)𝐄𝑇7 𝐅𝐄7

= 𝐄7𝐅
𝑇𝐄𝑇7 𝚺

−1(𝐈 −
∗
)𝐄𝑇7 𝐅𝐄7

(36)

In general, fault can come from any measurement or
a combination of different measurements, and the fault
characteristic depends on the particular type of measure-
ment used. For an inhomogeneous fault vector 𝐅, 𝜆 can
be expressed as 𝐅𝑇𝚺−1(𝐈 −

∗
)𝐅 without any loss of

generality. This might create a challenge if isolation is
required. Hence, we continue with the expression shown
in Equation (36). The parameter 𝜆 can be determined
by solving Equation (27) for given a set of 𝑃𝐹𝐴, 𝑃𝑀𝐷 ,
and Df.
Assuming we have an exact 𝑞-step pitot tube faults in

the vector 𝐅, we can project 𝜆 to a 𝑞-step detectable error
for the pitot tube by reformulating Equation (36):

𝑘∑
𝑗=𝑘−𝑞+1

𝑓2
𝑉𝑎𝑗

=
𝜆

𝐄𝑇7 𝚺
−1(𝐈 −

∗
)𝐄7

(37)

This formulation assumes the fault happens in every
time step in the sliding window. In reality, the fault can
occur at any time, but it can be only accounted up to 𝑞
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steps. Therefore, the following definition of MDE of 𝑓𝑉𝑎 ,
denoted as MDE𝑓𝑉𝑎 , is conservative if 𝑞 is large, but less
conservative when compared to the definition of MDE
in Equation (30). The relationship between MDE𝑓𝑉𝑎 and
MDE is shown below:

MDE𝑓𝑉𝑎 ≜
1

𝑞

√√√√√ 𝑘∑
𝑗=𝑘−𝑞+1

𝑓2
𝑉𝑎𝑗

=
1

𝑞

√
𝜆√

𝐄𝑇7𝚺
−1(𝐈 −

∗
)𝐄7

≤

√∑𝑘

𝑗=𝑘−𝑞+1
𝑓2
𝑉𝑎𝑚𝑎𝑥

𝑞
= 𝑓𝑉𝑎𝑚𝑎𝑥 = MDE

(38)

The MDE𝑓𝑉𝑎 can be interpreted as an average fault
over the sliding window and is smaller than the MDE
defined in Section 5.2.3. The difference between MDE𝑓𝑉𝑎
and MDE depends on the sliding window size and the
fault profile. If a small sliding window size and a slow
ramp fault profile are used, the MDE in the previous
subsection is not a bad choice for the fault detection
design.

6 PROTECTION LEVEL
CALCULATION

In the previous section, we introduced the test statistics
and MDE design and analysis for the air data fault detec-
tion system. In this section, we derive a new protection
level for 𝛼 and 𝛽. We first introduce the definition of the
alert limit and protection level in the context of synthetic
air data, then we give the formal definition of the protec-
tion levels.

6.1 Protection level and alert limit

We define the alert limit of angle-of-attack and sideslip
angles needed for the protection level calculation. Alert
Limit, denoted as 𝐴𝐿, is usually defined as the maximum
error in a state estimate that can be tolerated before a sys-
tem is considered hazardous. Protection Level, denoted as
𝑃𝐿, is defined as the guaranteed upper bound of the esti-
mation error uncertainty 𝜎. In theory, we want the prob-
ability of the state estimate error 𝜖 being greater than 𝐴𝐿
to be extremely low to assure integrity. Practically, we can
also formulate the integrity requirement by using 𝑃𝐿 as

follows4:

𝑃(|𝜖| > 𝑃𝐿|𝐻𝑖)𝑃(𝐻𝑖) ≤ 𝑃𝑀𝐷 for 𝑖 = {0, 1} (39)

As a consequence, if we have 𝑃𝐿 < 𝐴𝐿, the integrity
requirement will be met. The error uncertainty 𝜎 is usu-
ally inflated by a factor 𝐾. This inflated error uncertainty
𝐾𝜎 is the protection level 𝑃𝐿.
For a given integrity risk requirement 𝑃𝑀𝐷 , the 𝑃𝐿 are

calculated. Protection Level 𝑃𝐿 is a function of the sens-
ing system, and 𝐴𝐿 is a function of the operation. In other
words, 𝑃𝐿 and 𝐴𝐿 are independent from each other.
In the case of pitot tube failures being considered

here, we are interested in detecting WB faults before
they result in the air data estimate (i.e., 𝛼 and 𝛽)
being outside of the safe-flight envelope, thereby lead-
ing to a control system (or a pilot in the case of a
manned aircraft) to execute unnecessary but potentially
hazardous maneuvers.
For the purpose of simplicity, we will assume the safe-

flight envelope is a rectangle where the upper edge of
the safe-flight envelope is defined by the UAVs maximum
angle of attack 𝛼𝑚𝑎𝑥 (which is the stall angle of attack
𝛼𝑠𝑡𝑎𝑙𝑙). The lower edge is defined by a minimum angle of
attack𝛼𝑚𝑖𝑛, which is due to some aircraft structural consid-
erations. The left and right edges are defined by 𝛽𝑚𝑖𝑛 and
𝛽𝑚𝑎𝑥, which are derived either from aerodynamic control
or structural strength limits. Therefore, we define the alert
limit 𝛼abs

𝐴𝐿
and 𝛽abs

𝐴𝐿
as the absolute nominal safe operating

region here since the true reference 𝛼 and 𝛽 are typically
not available on UAVs. For the UAV considered here, the
lower and upper bound of 𝛼abs

𝐴𝐿
and 𝛽abs

𝐴𝐿
is given in the fol-

lowing:

𝛼abs
𝐴𝐿

= [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] = [−20◦, 15◦]

𝛽abs
𝐴𝐿

= [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] = [−30◦, 30◦]
(40)

These boundaries of the safe-flight envelope form the
absolute alert limits for the fault detection algorithm and
are generally not the same for different UAVs.
Note that the protection level bound 𝛼𝑃𝐿 represents a

deviation from the true state and the alert limit 𝛼𝐴𝐿 repre-
sents the relative error tolerance in the GNSS applications.
However, the absolute alert limit 𝛼abs

𝐴𝐿
in this case is still

valid. To see why this is the case, consider the following

4 This expression is simplified from the following: 𝑃(|𝜖| > 𝑃𝐿,

𝐷 < 𝑇|𝐻𝑖)𝑃(𝐻𝑖) = 𝑃(|𝜖| > 𝑃𝐿|𝐻𝑖)𝑃(𝐷 < 𝑇|𝐻𝑖)𝑃(𝐻𝑖) ≤ 𝑃(|𝜖| > 𝑃𝐿|𝐻𝑖)

𝑃(𝐻𝑖) ≤ 𝑃𝑀𝐷 , where 𝐷 is a detector function or test statistic, and 𝑇 is a
designed threshold
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F IGURE 11 Depiction of protection level and alert limit of 𝛼
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

mathematical equivalence:

𝛼𝑃𝐿 < 𝛼𝐴𝐿 ⇒ 𝛼𝑃𝐿 + 𝛼̂ < 𝛼𝐴𝐿 + 𝛼̂ ⇒ 𝛼abs
𝑃𝐿

< 𝛼abs
𝐴𝐿

(41)

where 𝛼𝐴𝐿 represents the alert limit in the relative sense,
and the absolute alert limit is defined as 𝛼abs

𝐴𝐿
≜ 𝛼𝐴𝐿 + 𝛼̂.

Similarly, the absolute protection level is defined as 𝛼abs
𝑃𝐿

≜

𝛼𝑃𝐿 + 𝛼̂. Hence, the new definition of 𝛼abs
𝐴𝐿

does not con-
flict with the typical definition of 𝛼𝐴𝐿. In general, 𝐼𝑟𝑒𝑞 is a
set of discrete probability values representing various fault
modes, and the probability of missed detection 𝑃𝑀𝐷𝛼

for 𝛼,
as an example, would be part of the integrity budget 𝐼𝑟𝑒𝑞.
Nevertheless, we will use the same value for the protection
level calculation since we are only dealing with one fault
mode, that is, 𝑃𝑀𝐷𝛼

= 𝑃𝑀𝐷𝛽
= 𝑃𝑀𝐷 = 𝐼𝑟𝑒𝑞.

Figure 11 graphically depicts both protection level 𝛼abs
𝑃𝐿

and alert limit 𝛼abs
𝐴𝐿

in relation to 𝛼. Ideally, 𝛼abs
𝑃𝐿

should
rarely go over 𝛼abs

𝐴𝐿
due to the small integrity risk require-

ment. When 𝛼abs
𝑃𝐿

does exceed 𝛼abs
𝐴𝐿
, we can safely conclude

it is highly likely to have been the result of a faulty pitot
tube and the integrity of 𝛼 is lost.

6.2 Protection level for synthetic air
data

The fault detection algorithm needs to guarantee (at a cer-
tain level of confidence) that estimation error in 𝛼 and 𝛽 do
not exceed their alert limits. Various slope-based PL calcu-
lations have been used to protect horizontal and vertical
state errors against single (Walter & Enge, 1995; Brown &
Chin, 1998; Milner & Ochieng, 2011) or multiple (Pervan
et al., 1998; Angus, 2006; Blanch et al., 2009; Jiang &Wang,
2014) GNSS faults. However, these methods are developed
for solving the redundant measurement problem.
Furthermore, the PL is usually calculated to protect

states in an EKF. We develop a PL method that can pro-
tect the states derived from the EKF states. In particular,
we calculate the PL for the synthetic angle-of-attack 𝛼 and
sideslip 𝛽 estimates.

Under the fault-free hypothesis 𝐻0, the PL is calculated
by inflating state errors by a factor of 𝐾. In particular, the
PL of 𝛼 and 𝛽 are calculated as follows:

𝛼𝑃𝐿,𝐻0
= 𝐾𝛼,0

√
𝐞𝑇
1
𝐀𝛼𝛽𝔼[𝛿𝒙𝑘𝛿𝒙

𝑇
𝑘
]𝐀𝑇

𝛼𝛽
𝐞1

= 𝐾𝛼,0

√
𝐞𝑇
1
𝐀𝛼𝛽𝑷𝑘𝐀

𝑇
𝛼𝛽
𝐞1 = 𝐾𝛼,0𝜎𝛼

(42)

𝛽𝑃𝐿,𝐻0
= 𝐾𝛽,0

√
𝐞𝑇
2
𝐀𝛼𝛽𝔼[𝛿𝒙𝑘𝛿𝒙

𝑇
𝑘
]𝐀𝑇

𝛼𝛽
𝐞2

= 𝐾𝛽,0

√
𝐞𝑇
2
𝐀𝛼𝛽𝑷𝑘𝐀

𝑇
𝛼𝛽
𝐞2 = 𝐾𝛽,0𝜎𝛽

(43)

where 𝐾𝛼,0 and 𝐾𝛽,0 under𝐻0 are calculated as follows:

𝐾(⋅),0 = 𝑄−1(𝑃𝑀𝐷∕2) (44)

where 𝑄 is the tail distribution function of the standard
normal cdf. The matrix 𝑷𝑘 is the state covariance from the
EKF and 𝐀𝛼𝛽 is the flow angle propagation transforma-
tion matrix specified in Sun et al. (2019b). The unit vectors
𝐞1 = [1, 0]𝑇 and 𝐞2 = [0, 1]𝑇 are used to extract the diago-
nal terms of 𝐀𝛼𝛽𝑷𝑘𝐀

𝑇
𝛼𝛽
.

In the presence of fault under the hypothesis 𝐻1,
PL needs to be increased to account for the faulty air-
speed component 𝑓𝑉𝑎 . The formulation is done as follows
according to (Brown & Chin, 1998; Angus, 2006):

𝛼𝑃𝐿,𝐻1
= slope𝛼

√
𝜆𝑈 + 𝐾𝛼,1𝜎𝛼 =

𝜎𝛼√
𝐷𝐫,𝑘

√
𝜆𝑈 + 𝐾𝛼,1𝜎𝛼

(45)

𝛽𝑃𝐿,𝐻1
= slope𝛽

√
𝜆𝑈 + 𝐾𝛽,1𝜎𝛽 =

𝜎𝛽√
𝐷𝐫,𝑘

√
𝜆𝑈 + 𝐾𝛽,1𝜎𝛽

(46)

where slope𝛼 and slope𝛽 represent the ratio between the
𝛼 or 𝛽 state error and the standard deviation of the test
statistic 𝐷𝐫,𝑘. The notion of the maximum slope (Brown &
Chin, 1998) is not applicable here since there is no redun-
dant airspeed at each time step to calculate a set of slopes.
Specifically, since the accumulated sequential residual or
innovation vectors come from the single pitot tube, so the
source of the fault is always known and singular. In other
words, the multiple hypothesis tests of determining which
GNSS measurement is faulty by calculating the maximum
slope does not apply here. The slope value in this study
depends on the test statistic window size and severity of
the fault profile.
The inflation factors 𝐾𝛼,1 and 𝐾𝛽,1 under 𝐻1 can be cal-

culated as follows:

𝐾(⋅),1 = 𝑄−1
(
𝑃𝑀𝐷

2𝑃𝐻1

)
(47)
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where 𝑃𝐻1
represents the failure rate of the pitot tube

due to water blockage. Generally, the failure rate of the
pitot tube due to a particular fault is calculated based on
rigorous sensor characterization testing. Since the failure
rate testing is not done for this study, we assume 𝐾(⋅),1 =
𝐾(⋅),0 = 𝑄−1(𝑃𝑀𝐷∕2) for both 𝛼 and 𝛽. This assumption
is valid but conservative as 𝐾(⋅),1 is generally greater than
𝐾(⋅),0 in general. The parameter 𝜆𝑈 is the upper confidence
bound for the maximum 𝑞-step airspeed faults, and it is
computed as follows:

𝜆 = 𝐄7𝐅
𝑇𝐄𝑇7 𝚺

−1(𝐈 −
∗
)𝐄𝑇7 𝐅𝐄7

≤ 𝐄7𝐅
𝑇𝐄𝑇7 𝚺

−1𝐄𝑇7 𝐅𝐄7

≤ 𝐄7𝐅
𝑇𝐄𝑇7𝑹

−1𝐄𝑇7 𝐅𝐄7

≤

𝑘∑
𝑗=𝑘−𝑞+1

𝑓2
𝑉𝑎𝑗

𝜎2
𝑉𝑎𝑗

=

√
MDE = 𝜆𝑈

(48)

This upper bound 𝜆𝑈 can make the protection levels
overly conservative if the size of the sliding window 𝑞 is
large.Hence, the tightness of the protection level is another
factor for choosing an appropriate 𝑞.

F IGURE 1 2 PHX by Sentera LLC [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

It is worth noting that many small UAVs do not have
angle vane sensors to provide a set of 𝛼 and 𝛽. The pro-
tection levels of 𝛼 and 𝛽 are particularly useful when the
angle vane sensor is not available. We can monitor 𝛼 and
𝛽 based on the synthetic air data estimates and protect the
vehicle from exceeding 𝛼 and 𝛽 flight envelopes due to the
pitot tube failure.

7 FLIGHT DATA TESTING

The fault detection algorithm is tested using a flight data
set recorded by a UAV. The UAV is the Sentera Phoenix
(PHX) shown in Figure 12. It has an Eagle Tree pitot tube
(Eagle Tree Systems, 2020) attached to the right wing
to measure airspeed. PHX utilizes a similar version of
Pixracer autopilot (Pixhawk FMU-V4) for control and
navigation.
For this particular flight operation, the UAV crashed

45 seconds into the flight due to a water-plugged faulty
pitot tube. This flight data is suitable for the fault detec-
tion algorithm analysis since it contains a knownWB pitot
tube fault signature.
Also, since the UAV has only one pitot tube, only one

SADS is employed to show the flight results. Ideally if this
UAV carried two pitot tubes and two independent SADS,
then it would follow the decision logic in Table 1 to raise
alarm and switch to SADS-2 when SADS-1 detected and
isolated the fault airspeed measurement.
Figure 13(a) and 13(b) show the trajectory, altitude, and

airspeed over the short flight period before the crash. The
UAV takes off around 570 s and circles up to about 70 m,
then flies straight northwest direction to the edge of the
crop field. It is seen in Figure 13b that the airspeed of UAV
experiences a sharp drop right after 618 s. The airspeed

F IGURE 13 Trajectory and airspeed information over the time of flight [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 14 SADS attitude estimates over time [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

measurement eventually drops to a negative value. The last
recorded altitude is around 35 m by the onboard autopilot.
Figure 14 shows the attitude estimates from the SADS

filter. Notice that the Euler angle estimates start to change
abruptly at the end of the flight due to the faulty pitot tube.
For example, the pitch angle 𝜃 and roll angle 𝜙 increased
dramatically around 618 s. The high value 𝜃 indicates the
UAV might have been pitching up and stalling.

Figure 15 shows three different test statistics and their
corresponding thresholds from the actual takeoff times-
tamp of 570 s to the end of the flight.
The top sub-figure shows the sliding window

innovation-based test statistic 𝐷𝛾 over time where
the window size 𝑞 is 19. The bottom sub-figure shows a
residual-based test statistic 𝐷𝐫 and a Geometric Moving
Average (GMA) residual-based test statistic 𝐷GMA𝐫 ,
where the window size 𝑞 is also 19 for both. The 𝐷GMA𝐫

is defined as the same as 𝐷𝐫 except the residual vector
𝐫GMA
𝑘−𝑞∶𝑘

is written as follows:

𝐫GMA
𝑘−𝑞∶𝑘

=
[
𝜆𝑞𝐫𝑇

𝑘−𝑞
𝜆𝑞−1𝐫𝑇

𝑘−𝑞+1
… 𝜆𝐫𝑇

𝑘−1
𝐫𝑇
𝑘

]𝑇
(49)

In Equation (49), it is seen that the𝐷GMA𝐫 uses an expo-
nential forgetting factor 𝜇𝑖 to weigh on the past measure-
ments less than the recent. The innovation-based thresh-
old 𝑇𝛾 and residual-based 𝑇𝐫 are different from each other
due to the difference in Df, even though the same size of
the sliding window is used.
It is seen that the innovation-based test statistic exceeds

its threshold three times. It appears that the first occur-
rence at 593 s is most likely a false alarm given the fact
we know the pitot tube WB fault occurs at the end of the
flight. Furthermore, by examining the attitude in Figure 14,
the large 𝜙 and sudden change in 𝜃 suggests a momentary
accelerated stall.

F IGURE 15 Detection variables over
time [Color figure can be viewed in the
online issue, which is available at
wileyonlinelibrary.com and www.ion.org]
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It is well known that the innovation-based test statistic
is sensitive to the highly dynamic motion. The UAV expe-
riences a large roll change at 593 s, which may cause 𝐷𝛾
to think there might be a fault in the system. The second
occurrencemight come from a sudden increase in airspeed
at 610 s. Though we do not know if the fault has occurred
yet by visually examining the airspeed plot, 𝐷𝛾 indicates
there might be a fault.
Notice 𝐷𝛾 goes below the threshold at 614 s before ris-

ing to cross the threshold again at 618 s for the third
time. This unstable behavior is not a good characteris-
tic for a detector because it will be issuing many false
alarms and failing to provide a crisp decision of a fault’s
occurrence.
It is also well known that the innovation-based test

statistic is sensitive to sensor noise scaling (Gustafsson,
2000), and the innovation covariance 𝐒 inside of 𝐷𝛾 is sen-
sitive to noise scaling. The relationship is illustrated by
Equation (50): 𝐒 is affected by noise covariance matrices
𝐑𝑤 and 𝐑, and the initial state covariance 𝐏0. Small 𝜂 can
make 𝐷𝛾 sensitive to noise even though the state estimates
are not affected.

𝐑̄ = 𝜂𝐑

𝐑̄𝑤 = 𝜂𝐑𝑤

𝐏̄0 = 𝜂𝐏0

⎫⎪⎬⎪⎭ ⇒
𝐏̄ = 𝜂𝐏

𝐒̄ = 𝜂𝐒
(50)

Though not shown here, by scaling the process noise
𝜎𝐰𝑊𝑑

of the wind vector without adversely changing the
performance of the estimator, the first two crossing occur-
rences of 𝐷𝛾 can be suppressed. However, hand-tuning
is not recommended because it might adversely affect
other estimates.
On the other hand, both residual-based test statistics 𝐷𝐫

and 𝐷GMA𝐫 exceed their corresponding thresholds only
once at the end of the flight. The threshold value for𝐷𝐫 and
𝐷GMA𝐫 are the same, hence only one 𝑇𝐫 is plotted. Though
small increases at 593 s and 612 s can be seen in 𝐷𝐫 , 𝐷𝐫 did
not cross its threshold.
The residual-based test statistic is less sensitive to both

highly dynamic motion and noise scaling due to the larger
weighting factor Σ. Furthermore, the GMA test statistic
𝐷GMA𝐫 appears to be even less sensitive. 𝐷GMA𝐫 is dis-
countingmany earlymeasurements in the sliding window.
Also, it rises faster than 𝐷𝐫 when crossing the threshold,
indicating a shorter fault detection time. When comparing
detection time alone, the innovation does appear to have
the fastest detection at the third crossing.
The GMA technique used here illustrates that some-

times different techniques can be used to improve the
baseline detector function. For example, we may com-

bine the CUSUM and residual-based test statistics to
improve detectability. Ultimately, it is a trade-off between
the detection time and false alarm when choosing a
detection test statistic. In this case, it appears the GMA
residual-based test statistic 𝐷GMA𝐫 is the best for the
faulty pitot tube detection since it crosses the thresh-
old at the correct incident and provides a good detection
time.
In order to see how observability can actually play an

important role in fault detection, we also monitor the
observability Gramian of the system over time. Different
metrics can measure the degree of discrete observability
Gramian, such as the determinant, trace, or the condition
number (Summers et al., 2016; Avant & Morgansen, 2019).
In work here, we utilize the condition number 𝜅 to quan-
tify the degree of observability. That is:

𝜅
[
𝑑,𝑘−𝑞∶𝑘

]
≜ 𝜅

[

𝑇
𝑘−𝑞∶𝑘𝑘−𝑞∶𝑘

]
(51)

where 𝑑,𝑘−𝑞∶𝑘 the discrete observability Gramian using
the information from the time step 𝑘-𝑞 to the current 𝑘.
In general, if the condition number of the observability
Gramian is large, it means the states are not well observed.
The observability Gramian here only requires a finite hori-
zon instead of the infinite horizon. This calculation is done
to monitor the recent motion of the dynamics of the vehi-
cle. It also reduces the computational burden for the com-
puter processor.
Figure 16 shows the normalized condition number

of observability Gramian over time. The poor condition
number is expected before takeoff since the observability

F IGURE 16 Normalized condition number of observability
Gramian
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Gramian rank is deficient. The condition number quickly
reaches near zero after 570 s (takeoff). However, it is seen
that the condition number got a bit worse from 600 s to
607 s. This change is perhaps due to the straight level flight
(no heading change), or some water started to enter the
pitot tube before it became evident.
The second claim is deduced based on examining all

the EKF state estimates at 600 s. Since there is no abnor-
mal phenomenon from the position, velocity, and attitude
estimates around 600 s, the IMU and GNSSmeasurements
are assumed to be nominal. Hence, the culprit is either
the poor observability due to the trajectory or the pitot
tube.
A poor condition number can potentially trigger the

fault detection algorithm to raise the alarm even though
there is no real fault. If there is a fault that is about
to happen, then monitoring the observability Gramian
can potentially warn the system before the fault occurs.
If a poor condition number is a result of the straight-
level flight, then weak observability can mask the fault
detectability if a fault occurs during this time. Therefore,
a close examination should be carried out when using
observability to detect the actual fault.
Figures 17(a) and 17(b) show the 𝛼 and 𝛽 estimates, 2𝜎

uncertainty bounds, protection levels 𝛼𝑃𝐿 and 𝛽𝑃𝐿, and
alert limits 𝛼𝐴𝐿 and 𝛽𝐴𝐿. The protection level bound is
for the single SAD. The protection level 𝛼𝑃𝐿 goes outside
the alert limit momentarily at 590 s, 592 s, and 595 s, and
exceeds both lower and upper alert limit at the end of the
flight. The s-turn causes the first three crossings before
heading to northwest direction. The last one is caused by

the faulty pitot tube. It can be seen that the 𝛼 increases
drastically at the end of the flight, which leads to the stall
and eventual crashing. Sideslip 𝛽 also experiences a similar
change during the s-turn. The sideslip estimate 𝛽 changes
from positive to negative, then positive again around 590 s,
which is intuitively correct based on the s-turn and the
northeast tail wind direction.
The protection level 𝛽𝑃𝐿 exceeds the alert limit a couple

of times and eventually goes outside the alert limit at the
end of the flight as expected. The protection level of 𝛼 and
𝛽 can be used to check the validity of ADS integrity, which
is much more useful than just looking at the confidence
uncertainty bound represented by 2𝜎. For example, we can
see that the 𝛼 and its 2𝜎𝛼 seem to be acceptable from 593 s
to 596 s, but the integrity of the 𝛼 estimate is actually lost
during this time based on the protection level. This loss of
integrity can be used as another flag for the validity of the
𝛼 estimate.

8 CONCLUSION AND FUTURE
OUTLOOK

A dual pitot tube ADS is designed with fault detection
and isolation capability for small UAS. The purpose of
this algorithm is to provide a reliable ADS and recovery
strategy for safe drone operations in case of the pitot tube
water-blockage fault under rainy and foggy conditions.
The fault detection algorithm is designed to detect faults
based on the given integrity requirements and known
water-blockage fault profile.

F IGURE 17 Flow angle 𝛼 and sideslip 𝛽 estimate, uncertainty bound, protection level, and alert limit [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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Systematic procedures and various factors are laid out to
show how to design the fault detection algorithm. Though
the stringent performance requirement, such as 10−7, may
not be realizable to certify ADS in small UAS due to the
low-cost sensors onboard, this IM approach allows engi-
neers to assess the performance of the FDI algorithm
from the requirement point of view. The high-performance
requirements can potentially be achieved for the ADS in
small UAS when highly accurate sensors (e.g., good GPS
and IMU), good control design (reject external distur-
bances), and sensible path planning (observability-aware
trajectory design) are employed.
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APPENDIX A: BATCH LINEAR SYSTEM
REALIZATION
In this appendix, we present one form of the batch lin-
ear system realization to faciliate the connection between
the LTV observability matrix and the residual-based test

statistic shown in Section 5. We start with a model of the
discrete linear dynamic system with an unknown additive
fault:

𝐳𝑘 = 𝐇𝑘𝒙𝑘 + 𝒗𝑘 + 𝐟𝑘

𝐱𝑘+1 = 𝚽𝑘𝒙𝑘 + 𝚪𝑘𝐰𝑘

(A1)

where 𝐟𝑘 is the deterministic additive fault vector, and
𝐱𝑘, 𝐳𝑘, 𝐰𝑘 and 𝒗𝑘 are defined in Section 2.2. The vec-
tor 𝐰𝑘 is the process noise vector and is assumed to
follow 𝑁(𝟎,𝐑𝑤). The matrices 𝚽𝑘 and 𝚪𝑘 are the state
transition matrix and discrete noise coefficient matrix,
respectively.
Only additive faults are chosen for this study to analyze

the feasibility of air data fault detection capability. Nonlin-
ear fault withmore sophisticatedmodels should be consid-
ered in the future.
Since there are not enough redundant airspeedmeasure-

ments at each time step 𝑘, we obtain the following batch
realization by stacking all the measurement vectors from
the past time 𝑘 − 𝑞 to the current time step 𝑘 in Equation
(A2):

𝐙𝑘−𝑞∶𝑘 = 𝑘−𝑞∶𝑘𝒙𝑘−𝑞 + 𝐐𝑤,𝑘−𝑞∶𝑘𝐖𝑘−𝑞∶𝑘

+𝐕𝑘−𝑞∶𝑘 + 𝐅𝑘−𝑞∶𝑘 (A2)

The matrices 𝐙𝑘−𝑞∶𝑘, 𝐖𝑘−𝑞∶𝑘, 𝐕𝑘−𝑞∶𝑘, 𝐅𝑘−𝑞∶𝑘, 𝑘−𝑞∶𝑘

and 𝐐𝑤,𝑘−𝑞∶𝑘 are defined in the following:

𝐙𝑘−𝑞∶𝑘 =
[
𝐳𝐓
𝐤−𝐪

𝐳𝑇
𝑘−𝑞+1

… 𝐳𝑇
𝑘

]𝑇
(A3)

𝐖𝑘−𝑞∶𝑘 =
[
𝐰𝐓
𝐤−𝐪

𝐰𝑇
𝑘−𝑞+1

… 𝐰𝑇
𝑘

]𝑇
(A4)

𝐕𝑘−𝑞∶𝑘 =
[
𝐯𝐓
𝐤−𝐪

𝐯𝑇
𝑘−𝑞+1

… 𝐯𝑇
𝑘

]𝑇
(A5)

𝐅𝑘−𝑞∶𝑘 =
[
𝐟 𝐓
𝐤−𝐪

𝐟 𝑇
𝑘−𝑞+1

… 𝐟𝑇
𝑘

]𝑇
(A6)

𝑘−𝑞∶𝑘 =

⎡⎢⎢⎢⎢⎣
𝐇𝐤−𝐪

𝐇𝑘−𝑞+1𝚽𝑘−𝑞
⋮

𝐇𝑘𝚽𝑘−1 …𝚽𝑘−𝑞

⎤⎥⎥⎥⎥⎦
(A7)
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𝐐𝑤,𝑘−𝑞∶𝑘 =

⎡⎢⎢⎢⎢⎢⎣

𝟎 𝟎 𝟎 … 𝟎

𝐇𝑘−𝑞+1𝚪𝑘−𝑞 𝟎 𝟎 … 𝟎

𝐇𝑘−𝑞+2𝚽𝑘−𝑞+1𝚪𝑘−𝑞 𝐇𝑘−𝑞+2𝚪𝑘−𝑞+1 𝟎 … 𝟎

⋮ ⋮ ⋱ ⋮

𝐇𝑘𝚽𝑘−1 …𝚽𝑘−𝑞+1𝚪𝑘−𝑞 𝐇𝑘𝚽𝑘−2 …𝚽𝑘−𝑞+1𝚪𝑘−𝑞+1 … 𝐇𝑘𝚪𝑘−1 𝟎

⎤⎥⎥⎥⎥⎥⎦
(A8)

The matrix 𝑘−𝑞∶𝑘 is the discrete LTV observability
matrix over a sliding window. This batch realization
[extension of the linear time-invariant system in (Iser-
mann, 2005)] formulation connects the stacked mea-
surements 𝐙𝑘−𝑞∶𝑘 to the past state vector 𝒙𝑘−𝑞 and its
associated observability matrix 𝑘−𝑞∶𝑘 nicely.
Batch realization is not unique; Joerger and Pervan

(2013) define a different formulation where the past mea-
surements are a function of all the past states. However,
the measurement model in Joerger and Pervan (2013) is
not explicitly expressed as a function of the observabil-
ity matrix.

APPENDIX B: PROOF OFMATRIX EQUALITY
In this appendix, we prove the following equation is true:

(𝐈 −
∗
)𝑇𝚺−1(𝐈 −

∗
) = 𝚺−1(𝐈 −

∗
) (B1)

where  is the observability matrix shown in Equation
(A7),∗ is left pseudoinverse of shown in Equation (21),
and𝚺 is theweightingmatrix shown in Equation (18). Note
that 𝚺 is symmetric by construction, that is, 𝚺 = 𝚺𝑇

Proof. First, we show 𝚺−1(𝐈 −
∗
) is symmetric:

(
𝚺−1(𝐈 −

∗
)
)𝑇

= (𝐈 −
∗
)𝑇𝚺−1

= (𝐈 − (
∗
)𝑇)𝚺−1

= (𝐈 −
∗𝑇

𝑇
)𝚺−1

=

(
𝐈 −

((

𝑇
𝚺−1

)−1

𝑇
𝚺−1

)𝑇


𝑇

)
𝚺−1

=
(
𝐈 − 𝚺−1(

𝑇
𝚺−1)−𝑇

𝑇
)
𝚺−1

= 𝚺−1 − 𝚺−1(
𝑇
𝚺−1)−𝑇

𝑇
𝚺−1

= 𝚺−1 − 𝚺−1(
𝑇
𝚺−1)−1

𝑇
𝚺−1

= 𝚺−1 − 𝚺−1
∗

= 𝚺−1(𝐈 −
∗
) (B2)

where the 7th equality is achieved because 
𝑇
𝚺−1 is

also symmetric.

Now we have the following fact:

(𝐈 −
∗𝑇

𝑇
)𝚺−1 = 𝚺−1(𝐈 −

∗
) (B3)

With the equality above, we can express Equation (B1)
as follows:

(𝐈 −
∗
)𝑇𝚺−1(𝐈 −

∗
) = (𝐈 −

∗
)𝑇(𝐈 −

∗𝑇

𝑇
)𝚺−1

= (𝐈 −
∗𝑇

𝑇
)(𝐈 −

∗𝑇

𝑇
)𝚺−1

(B4)

Now we proceed to prove the following:
(𝐈 −

∗𝑇

𝑇
)(𝐈 −

∗𝑇

𝑇
) = 𝐈 −

∗𝑇

𝑇 .

This can be shown to be true by moving the left-hand
side of equation to the right as follows:

(𝐈 −
∗𝑇

𝑇
) − (𝐈 −

∗𝑇

𝑇
)(𝐈 −

∗𝑇

𝑇
) = 0

(𝐈 −
∗𝑇

𝑇
)(𝐈 − 𝐈 +

∗𝑇

𝑇
) = 0

(𝐈 −
∗𝑇

𝑇
)(

∗𝑇

𝑇
) = 0

(B5)

We also realize the following equation is true:


∗𝑇

𝑇
=

(
(

𝑇
𝚺−1)−1

𝑇
𝚺−1

)𝑇

𝑇

= 𝚺−𝑇(
𝑇
𝚺−1)−𝑇

𝑇

= 𝚺−𝑇(
𝑇
𝚺−1)−1

𝑇

= 𝚺−𝑇
−1
𝚺

−𝑇

𝑇

= 𝐈 (B6)

Note that (𝑇
𝚺−1)−1 = 

−1
𝚺

−𝑇 is justified because

𝑇 is right-invertible. However, the right inverse (not

Moore-Penrose) of 𝑇 is not unique.
By substituting Equation (B6) into Equation (B5),

we show that (𝐈 −
∗𝑇

𝑇
)(𝐈 −

∗𝑇

𝑇
) = 𝐈 −

∗𝑇

𝑇 is

indeed true. Finally, we arrive the matrix property that we
want to prove:

(𝐈 −
∗
)𝑇𝚺−1(𝐈 −

∗
) = (𝐈 −

∗
)𝑇(𝐈 −

∗𝑇

𝑇
)𝚺−1

= (𝐈 −
∗𝑇

𝑇
)(𝐈 −

∗𝑇

𝑇
)𝚺−1

= (𝐈 −
∗𝑇

𝑇
)𝚺−1

= 𝚺−1(𝐈 −
∗
) (B7)
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