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A two-stage batch estimation algorithm for solving a class of nonlinear, static parameter estimation problems that

appear in aerospace engineering applications is proposed. It is shown how these problems can be recast into a form

suitable for the proposed two-stage estimation process. In the first stage, linear least squares is used to obtain a subset

of the unknown parameters (set 1) and a residual sampling procedure is used for selecting initial values for the rest of

the parameters (set 2). In the second stage, depending on the uniqueness of the local minimum, either only the

parameters in the second set need to be re-estimated, or all the parameterswill have to be re-estimated simultaneously,

by a nonlinear constrained optimization. The estimates from the first stage are used as initial conditions for the

second-stage optimizer. It is shown that this approach alleviates the sensitivity to initial conditions andminimizes the

likelihood of converging to an incorrect local minimum of the nonlinear cost function. An error bound analysis is

presented to show that the first stage can be solved in such a way that the total cost function will be driven to the

optimal cost, and the difference has an upper bound. Two tutorial examples are used to show how to implement this

estimator and compare its performance to other similar nonlinear estimators. Finally, the estimator is used on a 5-hole

Pitot tube calibration problem using flight test data collected from a small unmanned aerial vehicle that cannot be

easily solved with single-stage methods.

Nomenclature

ax; ay; az = body-axis translational acceleration

bax ; bay ; baz = bias of body-axis translational acceleration

bp; bq; br = bias of body-axis rotational velocity

f = nonlinear dynamic model
g = gravitational acceleration
h = nonlinear measurement model
Kα; Kα = sensitivity coefficients of angle-of-attack and

sideslip

N�μ; σ2� = normal (Gaussian) distribution with mean μ and
standard deviation σ

Ps; Pt = static and dynamic pressures
PΔα = differential angle-of-attack pressure
PΔβ = differential sideslip angle pressure

p; q; r = body-axis rotational velocity
R = noise covariance matrix
t = time
u; v;w = body-axis translational velocity
u = input vector
Va = airspeed
x = state vector
y = true output vector
α = angle of attack
β = sideslip angle
ρ = air density
ϕ; θ;ψ = Euler angles

Superscripts

�⋅�T = transpose

�⋅�−1 = matrix inverse

�⋅̂� = estimate of �⋅�
�⋅�� = optimal value of �⋅�

I. Introduction

T HIS paper presents an algorithm for solving a class of nonlinear
estimation problems that appear in aerospace guidance, naviga-

tion, and control. These nonlinear estimation problems appear in
applications such as vehicle system identification; sensor calibration;
and vehicle positioning, navigation, and timing (PNT). In the past,
theseproblemshave been solvedeither by standard estimators (e.g., the
Kalman filter or its many variants [1,2]; maximum likelihood estima-
tors [3]; or output-error minimization [4–6]) or, in many instances, by
ad hoc approaches developed for the particular problem at hand. It is
the claimof this paper that a large number of these nonlinear estimation
problems have a similarmathematical structure that can be exploited in
a two-stageestimator. This estimator canovercome the initial condition
sensitivity problem, have good convergence, and, in many instances,
have a guaranteed estimation bound on the total cost function. In this
paper, we describe this nonlinear mathematical structure and discuss
why it arises in many aerospace sensing and estimation problems.
Subsequently, we develop an estimator designed to exploit this non-
linear structure and provide examples to demonstrate its performance.
The class of nonlinear estimation problems that are the subject of

this paper have the following form:

zk � A�ξ2�ξ1 � b�ξ2� � vk (1)

where ξ � � ξT1 ξT2 �T is the vector of parameters to be estimated, zk
is a measurement vector at any discrete time tk, and vk is the noise
vector corrupting the measurement at tk. The matrixA and the vector
b are functions of the unknown parameters ξ2 only. This mathemati-
cal form appears often in parameter estimation problems.Aswe show
later in the paper, this form arises when embedded in the problem at
hand is the standard sensor error model that relates measured quan-
tities zk to their true values yk given by the following mathematical
relationship from Refs. [5] [Eq. (10.13)] and [7] [Eqs. (4.15–4.17)]:

zk � hk�yk; ξ� � vk � Cyk � nk � vk (2)

In the standard sensor error model given above, the matrix C is a
matrix whose entries are a function of unknown sensor parameters
(scale factor errors, axis misalignment errors, etc.), and the vector nk

consists of unknown null-shifts (biases). BothC andnk are functions
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of the parameter ξ. The vector vk is independent Gaussian white
measurement noise. In the Appendices of this paper, we provide a
general canonical form and two examples that show how the form of
Eq. (1) arises from Eq. (2).
The algorithm proposed in this paper exploits the structure inEq. (1)

by using a two-stage estimation scheme. In the first stage, we solve a
linear least-squares problem for the parameter vector ξ1, where the
remainder of the unknowns in the parameter vector ξ2 are held fixed at
some predetermined values (i.e., using prior knowledge or systemati-
cally selected). In the second stage, depending on the uniqueness of the
local minimum, we solve a constrained nonlinear optimization prob-
lem for either ξ2 only (and ξ1 can be determined consequently), or all of
the unknowns (ξ1 and ξ2) simultaneously, by using the estimates from
the first stage as the initial conditions for the optimization. As will be
demonstrated later, this formulation overcomes initial condition sensi-
tivity issues and leads to excellent convergence properties and, inmany
instances, guaranteed upper bounds on the cost function.

A. Prior Work

The ideaof solvingnonlinear estimationproblems in twostages isnot
new, and some of the earliest work relevant to the discussion here dates
from the early 1970s [8–10]. In particular, Golub and Pereyra [10] dealt
with a nonlinear parameter estimation problem by solving only a subset
of the total parameters in the first stage. They used the idea of removing
“conditionally linear” parameters to separate linear and nonlinear
parameters [11]. It was proved that all the critical points (local or global
optima) of the first stage yield the same critical points as the nonlinear
least-squares problem.When the nonlinear estimate is solved in the first
stage, then the rest of the unknown can be solved for linearly. However,
the numerical algorithmcanbecomplex as it requires computing special
derivatives of orthogonal projectors that have to be obtained for the
efficient gradient descent optimization method to work.
Haupt et al. [12] proposed a two-step, recursive, and iterative

estimation algorithm. The algorithm uses a change of variables to split
the cost function into a linear problem in the first step and a nonlinear
problem in the second step. The split is done in such away that the first-
step states becomemeasurements for the second-step states.While this
estimator is powerful and has been used successfully in many aero-
space estimation problems, the underlying approach will not always
lead to an optimal estimate, most notably when the second step cost
function is nonconvex. Furthermore, as we show later, it is not always
obvious (or even possible) how to split some problems into a linear and
nonlinear step by a simple change of variables.
Another similar and highly effective two-step procedure was

proposed by Alonso and Shuster [13] to solve the magnetometer
calibration problem. Their approach “centers” the nonlinear meas-
urement model into a linear model and solves a centered estimate in
the first step. In the second step, it uses the centered estimate as an
initial estimate to approximate the original estimated parameters.
However, this algorithm is somewhat ad hoc in that it is very specific
to the magnetometer calibration problem; the statistical properties of
the estimation errors cannot be easily transferred to other general
estimation problems. The Prony algorithm [14] is another example of
an ad hoc estimation approach that has been used successfully in the
problem of estimating frequency, amplitude, phase, and damping
components of electrical power system response signals.
In the field of aerodynamic parameter estimation, the equation-error

approach [5] is often used to obtain starting values for the model
parameters before applying iterative methods such as output error
[5], which is a maximum likelihood estimator for the problem where
process noise is neglected. In other cases, measured states can be
substituted in the first iteration of output error so that initial parameter
estimates are not needed. Using the equation-error approach or sub-
stituting the measured states in the first iteration, followed by applica-
tion of output error, can be also viewed as two-stage approaches.

B. Contribution

There are two main contributions of this paper. First, we show that
there is a class of nonlinear estimation problems that arise in aero-
space engineering applications that often have the mathematical

structure of Eq. (1). Second, we exploit this nonlinear structure to
develop an estimator that naturally leads to a procedure for selecting
good initial conditions for a given problem and have comparable (and
in some instances better) accuracy and convergence characteristics
relative to other nonlinear estimators currently used in aerospace
applications. We present two illustrative scalar examples to show
how this estimator is implemented. Finally, we use this estimator to
solve the problem of calibrating a 5-hole Pitot tube in flight. This
problem is difficult to solve with a single-stage estimator due to the
nonlinearity and nonzero wind condition.

C. Paper Organization

The remainder of this paper is organized as follows. Section II
describes the proposed estimator. The description includes a detailed
derivation of the estimator equations and error bounds. In Sec. III, the
estimator is used to solve two simple examples. These examples are
tutorial in nature and show how the estimator is implemented in
practice and how its performance compares to other nonlinear estima-
tors. Then, inSec. IV,weuse the estimator to solve the 5-holePitot tube
calibration problem using flight test data collected from an unmanned
aerial vehicle (UAV). Section V provides concluding remarks.

II. Estimator Formulation

In this section, we formulate the two-stage estimator, which is the
subject of this paper. We start by noting that the general nonlinear
measurement model with additive noise from estimation theory [1]
can be written as follows:

zk � hk�xk; uk; ξ� � vk (3)

Without loss of generality, we are posing this as a parameter
estimation problem. As such, we have separated the parameters to
be estimated, ξ, from the states of the system xk. We assume that this
measurement model can be recast (as shown by the canonical form
and examples in the Appendices) into the form given by Eq. (1) or

zk�A�xk;uk;ξ2�ξ1�b�xk;uk;ξ2��vk; Efvkg�0; EfvkvTk g�R

(4)

where we assume that uk and xk for k � 1; : : : ; N are known.
Themeasurement noisevk is assumed to be independent, identically

distributedGaussianwhite noise. Thus the covariancematrixR is set to
be diagonal and its entries are unknown.As noted earlier, the algorithm
proposed in this paper exploits the structure of Eq. (4) as follows: First,
we solve a linear least-squares problem for the parameter vector ξ1
where the remainder of the unknowns in the parameter vector ξ2 are
held fixed at someappropriate and fixedvalues. Thealgorithm includes
amethod for assessing the appropriateness of candidate ξ2 values. This
is called the first stage. In the following second stage, we solve a
constrained nonlinear optimization problem for either ξ2 only (ξ1 can
be subsequently determined) or else for all of the unknowns (ξ1 and ξ2)
simultaneously, by using the estimates from the first-stage as the initial
condition for the optimization. The choice of re-estimating either ξ2
only or else all the parameters in the second stage depends on the
uniqueness of the local minimum. The determination is made empiri-
cally by a residual sampling procedure. This formulation leads to
excellent convergence properties and, in many instances, guaranteed
error bounds on the total cost function to be minimized. It should be
noted that this is different from the two-step estimator proposed by
Haupt et al. [12] in two fundamental ways. First, a change of variables
is not required. Rather, the inherent structure of the problem is used in
the two-stage process. Second, the Haupt/Kasdin estimator uses esti-
mates from their first-step process (a linear problem) as measurements
in the second-step process (nonlinear optimization). In the algorithm
proposed here, the parameters are all estimated without having to
formulate a pseudomeasurement by a change of variables.
To showwhy the proposed estimator works, we start by noting that

the optimal estimate of the parameter vector ξ� is theminimizer of the
quadratic cost function J�ξ� with a penalized term on the covariance
noise matrix R, which is nonlinear in ξ and given below:
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ξ� � arg min
ξ∈ξlimit

J�ξ� (5)

J�ξ� � J�ξ1; ξ2� �
1

2

XN
k�1

kzk −A�ξ2�ξ1 − b�ξ2�k2R � N

2
ln jRj (6)

where we drop xk and uk from A�xk; uk; ξ2� and b�xk;uk; ξ2� to

simplify the notation. ξlimit is the constraint that is imposed on ξ. This
cost function is essentially themaximum likelihood estimationwithout

the constant term [3,5]. From Eq. (6), it is clear that for a given, fixed

value of ξ2 (which impliesA�ξ2� and b�ξ2� are known), solving for ξ1
is nothing more than the traditional, linear least-squares estimation

problem ifR is an identity matrix. Assuming thatR is known for now

(how the unknownR is handled is discussed in Sec. II.C), the accuracy

of the estimate for ξ1, denoted as ξ̂1,will dependonhowaccurateA�ξ2�
is. This, in turn, depends on how close a particular ξ2 used to form

A�ξ2�, denoted as ξ2p, is to the optimal ξ�2 . If the initial guess ξ2p is

equal to ξ�2 , then the estimate of ξ1 resulting from the linear least-

squares problem will be optimal. However, because ξ�2 is not known,

how canwe decidewhether a given value of ξ2p is close to ξ�2?Wewill

answer this question by showing that the following are true:
1) The minimum of the cost function J�ξ� is bounded from above

and below by the error term E (E will be discussed in detail in
Secs. II.A and II.B):

J�ξ�1 ; ξ2p� − E ≤ J�ξ�1 ; ξ�2� ≤ J�ξ�1 ; ξ2p� (7)

2) If A�ξ2� and b�ξ2� satisfy the Lipschitz condition and the
domain of the state vector ξ is finite, then the cost function error E
is bounded. Furthermore, the error term E is a function of ξ2p.

Wewill use these two points to develop a metric for assessing how

close J�ξ�1 ; ξ2p� is to J�ξ�1 ; ξ�2�. Thiswill be used to guide our selection
of ξ2p, which will bring the cost function value in the first stage close
to its optimal value. Oncewe are close enough to the minimum value

of J�ξ1; ξ2�, we carry out the second-stage optimization either on ξ2
only, or else on ξ1 and ξ2 simultaneously. The choice of determining

whether to estimate one set or both sets can be empirically assessed

by estimating trace of R, denoted as Tr�R�, in the first stage. If the

estimated Tr�R� computed from a range of ξ2p has a unique local

minimum, then only ξ2 needs to be re-estimated. Otherwise, both ξ1
and ξ2 must be re-estimated simultaneously because the constraints

for ξ1 and ξ2 in the sequential optimizing setting may not be valid.

This will be explained further in Sec. II.C.
It is observed that, in some aerospace parameter estimation prob-

lems, ξ2 can be set to zero initially because it normally represents

terms that are small biases or scale factor errors (c.f. Appendix A),

and they are close to zero if the sensors are accurate. This information

can also help determine ξ2p qualitatively in addition to the quantita-

tive procedure described in Sec. II.C. In the next section, we show

why the two points noted above are true.

A. Bounding J�ξ1; ξ2�
To show that Eq. (7) is true, we expand the cost function in Eq. (6)

as follows:

J�ξ1; ξ2� �
1

2

XN
k�1

kzk −A�ξ2�ξ1 − b�ξ2�k2R � N

2
ln jRj

� 1

2

XN
k�1

kzk −A�ξ2p�ξ1 − b�ξ2p� − �A�ξ2� −A�ξ2p��ξ1 − �b�ξ2� − b�ξ2p��k2R � N

2
ln jRj

≥
1

2

XN
k�1

�kzk −A�ξ2p�ξ1 − b�ξ2p�k2R − k�A�ξ2� −A�ξ2p��ξ1k2R − kb�ξ2� − b�ξ2p�k2R� �
N

2
ln jRj|����������������������������������������������������������������������������������������{z����������������������������������������������������������������������������������������}

H�ξ1 ; ξ2�

(8)

The last inequality is obtained using the triangle inequality:
kv� wk ≥ kvk − kwk.
Thus, if we minimize both sides of Eq. (8), the following is

obtained:

J� ≥ min
ξ1 ;ξ2

H�ξ1; ξ2�

� min
ξ1;ξ2

1

2

XN
k�1

kzk −A�ξ2p�ξ1 − b�ξ2p�k2R � N

2
ln jRj|��������������������������������������������{z��������������������������������������������}

J�ξ�
1
;ξ2p�

−max
ξ1;ξ2

1

2

XN
k�1

�k�A�ξ2� −A�ξ2p��ξ1k2R � kb�ξ2� − b�ξ2p�k2R|��������������������������������������������������{z��������������������������������������������������}�
E

(9)

From the equation above, we see that E is the error between the
global optimal cost J� and the minimum of the first-stage cost
J�ξ�1 ; ξ2p� using a particular ξ2p.
By definition of the optimum cost, the following inequality is true:

J� ≜ J�ξ�1 ; ξ�2� ≤ J�ξ�1 ; ξ2p� (10)

Equation (7) follows naturally from Eqs. (9) and (10). It should be
noted that Eq. (7) does not imply that there is a value of ξ2 � ξ 02p such
that J�ξ�1 ; ξ 02p� � J�ξ�1 ; ξ2p� − E < J�. Recall that in this first stage

we are selecting a value for ξ2 a priori and the free variable is ξ1. So for
every value of ξ2 we select, the cost function for ξ1 changes. Instead,
the point articulated by Eq. (9) is this: If the cost errorE is small, then
J�ξ�1 ; ξ2p� ≈ J� and the result of the first-stage cost is very close to the
true optimal cost. In other words, the second step is now just a fine-
tuning of the first stage. In the next section, we derive bounds for the
cost error E.

B. Bounding E � E�ξ2p�
In general, it would be difficult to bound E unless we place some

restrictions on the nature of the functionsA�ξ2� and b�ξ2� as well as
the state vector ξ � � ξT1 ξT2 �T. Thus, wewill assume that the follow-

ing conditions hold true:
1) The norm of the unknown parameter ξ1 is bounded by

l1: kξ1k ≤ l1.
2) The norm of the difference between ξ2p and ξ�2 is bounded by

l2: kξ�2 − ξ2pk ≤ l2.

3) The nonlinear functionsA�ξ2� and b�ξ2� are Lipschitz continu-
ous functions and they satisfy the following:

kA�ξ�2� −A�ξ2p�k ≤ LAkξ�2 − ξ2pk and

kb�ξ�2� − b�ξ2p�k ≤ Lbkξ�2 − ξ2pk for ξ�2 < ξ2 < ξ2p

where l1 and l2 are scalars, and LA and Lb are called Lipschitz
constants (also scalars). The first two conditions are satisfied if the
state vector ξ has a finite domain. This is a reasonable assumption in
many engineering problems where the state vector represents some
physical and measurable quantity. The upper bound l1 in the first
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assumption represents the maximum value that ξ1 can achieve. The
upper bound l2 in the second assumption represents the error
between the initial guess and optimal value of ξ2. Thus, these two
conditions are not very restrictive. The values of l1 and l2 can be
usually estimated based on the prior knowledge. For example, the
absolute value of a reasonable scale factor ξ2 should not be bigger
than 0.5 (i.e., −0.5 ≤ ξ�2 ≤ 0.5 and this bound is very conservative).
Then we can pick ξ2p such that jξ�2 − ξ2pj ≤ 0.5� jξ2pj ≤ l2. ξ2p
should be chosen such that it is close to ξ�2 . If ξ2p is set to be 1, then l2

can be set to 1.5 to upper bound jξ�2 − ξ2pj. The third condition

requiring the functions A�ξ2� and b�ξ2� to be Lipschitz continuous
is not very restrictive either. Many mathematical functions used to
model physical systems, such as the square root (real positive num-
bers under the square root), as well as sine and cosine functions, are
Lipschitz continuous. Furthermore, LA and Lb can also be viewed as
the derivative information of ξ2. If the selected ξ2p approaches ξ�2 ,
thenLA andLb approach zero.With these three assumptions, we can
upper bound the following two error terms:

E1 ≜ max
ξ1 ;ξ2

k�A�ξ2� −A�ξ2p��ξ1k ≤ max
ξ1;ξ2

kA�ξ2� −A�ξ2p�kkξ1k

≤ max
ξ2

kA�ξ2� −A�ξ2p�kl1 ≤ LAkξ�2 − ξ2pkl1

≤ LAl2l1 (11)

E2 ≜ max
ξ1 ;ξ2

kb�ξ2� − b�ξ2p�k ≤ Lbkξ�2 − ξ2pk ≤ Lbl2 (12)

where the first inequality in Eq. (11) comes from Cauchy–Schwarz
inequality. Using Eqs. (11) and (12) we can derive an upper bound on
the error E as follows:

E�max
ξ1;ξ2

1

2

XN
k�1

�k�A�ξ2�−A�ξ2p��ξ1k2�kb�ξ2�−b�ξ2p�k2�

�1

2

XN
k�1

�max
ξ1;ξ2

k�A�ξ2�−A�ξ2p��ξ1k�2

�1

2

XN
k�1

�max
ξ1;ξ2

kb�ξ2�−b�ξ2p�k�2

�1

2

XN
k�1

�E2
1�E2

2�≤
N

2
�L2

Al
2
2l

2
1�L2

bl
2
2��

N

2
l2
2�L2

Al
2
1�L2

b� (13)

where we dropped the subscript R without loss of generality. Equa-
tion (13) implies that for a fixed length of data setN, if the initial guess
ξ2p is close to the optimal ξ�2 (i.e., LA and Lb approach zero) and the

bounds are ξ1 and ξ2 are small (i.e.,l1 andl2 approach zero), then the
first-stage optimization cost function is close to the original cost
function (i.e., E consequently approaches zero). This means that
the result of the first stage can bring the cost very close to the
minimum global cost, which makes the second stage more likely to
converge.

C. Selection of ξ2p
So how dowe select ξ2p so thatE is small, thereby assuring that the

second-stage optimizationwill lead to the correct solution?Although

it is difficult to develop a prescriptive solution for selecting ξ2p, we
can answer the following related question: How do we know if a

given choice of ξ2p is one that will increase the chances of conver-

gence to the correct solution? To answer this question, we start by

linearizing A�ξ2� and b�ξ2� with respect to ξ2 at ξ2p as follows:

A�ξ2� ≈A�ξ2p� �
∂A�ξ2p�
∂ξ2

Δξ2

b�ξ2� ≈ b�ξ2p� �
∂b�ξ2p�
∂ξ2

Δξ2 (14)

If ξ2p is chosen such that the first-order terms are sufficient small

and satisfy Eq. (15),���� ∂A�ξ2p�
∂ξ2

Δξ2

���� ≤
���� ∂A�ξ2p�

∂ξ2

����l2 ≪ kA�ξ2p�k���� ∂b�ξ2p�∂ξ2
Δξ2

���� ≤
���� ∂b�ξ2p�∂ξ2

����l2 ≪ kb�ξ2p�k (15)

then the nonlinear parameter cost function in Eq. (6) can be approxi-
mated by

arg min
ξ1;ξ2

1

2

XN
k�1

kzk −A�ξ2�ξ1 − b�ξ2�k2R � N

2
ln jRj

≈ arg min
ξ1

1

2

XN
k�1

kzk −A�ξ2p�ξ1 − b�ξ2p�k2R�ξ2p� �
N

2
ln jR�ξ2p�j

(16)

where R�ξ2p� is still unknown but it is a matrix that depends on ξ2p.
Equation (16) implies that the linearized system cost is close to the
original nonlinear system cost. The right-hand side of Eq. (16) can be
solved using linear least squares by setting the unknownR�ξ2p� equal
to the identity matrix. Note that ξ1p is suboptimal (biased) in the first

stage due to the unknown R and the bounding properties shown in
Eqs. (7) and (13) do not change except J�ξ�1 ; ξ2p� � J�ξ1p; ξ2p�. The
unknown R and ξ2 are solved optimally via the second-stage non-
linear optimization.
There may be one or more suboptimal pairs (ξ1p, ξ2p) obtained

from solving the linearized system that has a cost value approxi-
mately equal to the optimal cost. Because estimating parameters
using linear least square is not computationally expensive, we can
sample a large pool of ξ2p from the feasible set (constrained by

kξ�2 − ξ2pk ≤ l2) to estimate the suboptimal ξ1p. Also, the parameter

ξ2p should satisfy Eqs. (17) and (18):

k�∂A�ξ2p�∕∂ξ2�kl2

kA�ξ2p�k
≤ T1 and

k�∂b�ξ2p�∕∂ξ2�kl2

kb�ξ2p�k
≤ T2 (17)

XmA

i�1

XnA
j�1

∂A�i; j�2�ξ2p�
∂ξ2∂ξT2

> 0nξ2×nξ2 and
Xmb

i�1

∂b�i�2�ξ2p�
∂ξ2∂ξT2

> 0nξ2×nξ2

(18)

whereT1 andT2 are user defined and can be interpreted as percentage
requirements, and nξ2 is the number of parameters in ξ2. The smaller

the values of T1 and T2 (obtained through varying ξ2p), the tighter the
error bound on E. Equation (17) ensures validity of linearization in
the first stage and Eq. (18) enforces local convergence for iterative
methods in the second stage.
Once we have chosen a set of ξ2p, we can estimate the residual

vector history vk for k � 1; : : : ; N and use it to build ametric to find a
suitable pair (ξ1p, ξ2p) for the second-stage nonlinear estimation.

Namely, we find the suboptimal pair (ξ̂1p, ξ̂2p) by solving Eq. (19):

arg min
ξ2p

Tr�R�ξ2p�� � arg min
ξ2p

XN
k�1

Tr�vkvTk �

where vk � zk −A�ξ2p�ξ̂1p − b�ξ2p�
and ξ̂1p � �ATA�−1AT�Z − B�
for ξ2p ∈ Sξ2 (19)

where A, B, and Z are concatenations of Ak�ξ2p�, bk�ξ2p�, and zk,
respectively, for k � 1; : : : ; N. Sξ2 is a chosen set that satisfies the

constraint kξ�2 − ξ2pk ≤ l2 and Eqs. (17) and (18). By minimizing

the trace ofR�ξ2p�, we are essentially finding the suboptimal pair that
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gives the smallest residual vector. We denote this method as the
residual sampling procedure. Note that Tr�R�ξ2p�� is a similar mea-

sure of the error term E shown in Eq. (7), where E can be interpreted
as a weighted residual least-squares error.
If the estimated Tr�R�ξ2p�� has a local minimum, then only ξ2

needs to be re-estimated in the second stage. Estimating only ξ2 also
means that the search space in the nonlinear programming is signifi-
cantly reduced. Once ξ�2 andR are estimated alternately in the second

stage, ξ�1 is immediately calculated using weighted linear least

squares. We also use R�ξ2p� to initialize R in the second stage, as

shown in Eq. (16). If the estimated Tr�R�ξ2p�� does not have a unique
local minimum (as shown in Sec. IV), both ξ1 and ξ2 should be re-
estimated simultaneously in the second stage. This is because the
sequential order of constraints may not be valid. Namely,

min
ξ1∈Sξ1; ξ2∈Sξ2

J�ξ1; ξ2� ≠ min
ξ2∈Sξ2

� min
ξ1∈Sξ1

J�ξ1; ξ2�� (20)

When ξ̂1 from the inner minimization on the right-hand side of
Eq. (20) cannot be uniquely determined, the outer minimization may

not be able to arrest ξ̂1 escaping from its own constraint. Though this
inequality holds true in general, we observe that if the inner mini-
mization has a unique solution (i.e., the errorE is small) using a large
sample of ξ2p from the feasible set Sξ2 , then both sides of Eq. (20) can
be equal. In other words, because the search space of ξ2 in the inner
minimization has been searched exhaustively via sampling, the

chance of ξ̂1 escaping from the outer minimization is small. There-
fore, if we cannot clearly find a unique local minimum in the first
stage represented by the inner minimization, we need to re-estimate
ξ1 and ξ2 simultaneously by solving the left-hand side of Eq. (20).

The estimates ξ̂1p and ξ̂2p from the first stage are still used as the

initial condition, where ξ̂2p is any vector of the set that results in

multiple local minima.
Though this residual sampling method is very crude, it does

provide an excellent initial condition for the second stage, as will
be demonstrated by examples in Secs. III and IV. One possible
alternative of selecting ξ2p would be to evaluate the Jacobian
∇J�ξ2p� and iteratively update ξ2p until ∇J�ξ2p� � 0. However, this

method is computationally expensive and prone to error when the
nonlinear functions A�ξ2p� and b�ξ2p� are multidimensional and

highly nonlinear. The effect of this selection of ξ2p is depicted

graphically in Fig. 1, where ξ�j�2p is a not good choice; it does not give

the smallestTr�R�ξ2p�� and it may cause the second stage to arrive the

wrong minimum even though it is within the bound of l2. On the

other hand, ξ�i�2p is a good choice because 1) it is the local minimum in

the constraint set l2 and 2) the positive concavity (concave up)
ensures local convergence.
Putting all of this together results in the following procedure for

implementation of the proposed algorithm:
Step 1: Formulate the measurement equation to have the form

given by Eq. (4).

Step 2: Sample a large pool of ξ2p from the feasible constraint set
kξ�2 − ξ2pk ≤ l2; those ξ2p should also satisfy Eqs. (17) and (18).

Step 3: Estimate ξ1p by minimizing the cost function (right-hand
side of Eq. 16) using linear least squares with the unknown R � I.
Then calculate the corresponding trace Tr�R�ξ2p��.
Step 4: Find a suboptimal pair (ξ̂1p, ξ2p) such that the correspond-

ing Tr�R�ξ2p�� has a unique local minimum. If there exist multiple

suboptimal pairs (similar numerical values), choose an arbitrary one
from these suboptimal pairs. This completes the first stage.
Step 5: If there exists a unique local minimum from Tr�R�ξ2p��,

then solve for ξ2 only in the second stage with ξ2p as the initial

condition. UseR�ξ2p� to initializeR in the second stage. Once ξ�2 and
R are obtained, ξ�1 immediately follows using weighted linear least

squares. Otherwise, solve for both ξ1 and ξ2 simultaneously with the

suboptimal estimate (ξ̂1p, ξ2p) as the initial condition in the second

stage. The nonlinear function can be minimized by any standard
iterative method such as modified Newton–Raphson, Gauss–New-
ton, or Levenberg–Marquardt [15] method. We estimate ξ and R
alternately until both ξ and the diagonal elements ofR converge. This
completes the second stage.
Though the measurement model in Eq. (4) resembles a Kalman

filter (KF) or extended Kalman filter (EKF) measurement model
equation, we find that it is not straightforward to make the proposed
algorithm a stand-alone measurement equation in a recursive estima-
tion. This is because of the nature of the first stage, where the
optimality and separability of ξ̂1 depends on ξ̂2 generally in a non-
linear fashion. However, one can use the first stage of the proposed
algorithm to estimate an initial conditionwith a small batch of data for

an EKF or iterated-EKF (IEKF) filter. Then we can use
_̂
ξ � 0 as the

parameter time update equation and linearize the measurement in
Eq. (4) with respect to ξ to formulate the linearized measurement
matrix needed for EKF or IEKF. This is demonstrated in Sec. IVof
Ref. [16]. In the following section, we provide a demonstration on
how to implement this estimator.

III. Two Tutorial Examples: Scalar Measurement
Equations

To demonstrate the mechanics of using this estimator, gain some
intuition into its operation, and compare its performance to other
estimators, we solve the following static parameter estimation prob-
lem, which is a simplified version of the problem presented in
Ref. [12] [Eq. (36)]:

zk � fk�ηk� � vk � �1� a� cos�ηk � b� � c|�������������������{z�������������������}
fk�ηk�

� vk (21)

The variables a, b, and c (the coefficients of the nonlinear function
fk) are the parameters wewant to estimate. In this particular case, we
set the values of the parameters as follows: a � 1, b � 0.1, and
c � 1. There are 100 scalar measurements zk generated by varying
η from 1 to 10 rad, incrementing by the same interval. The 100
measurement noise vk is drawn from a normal distributionwith mean
of zero and a standard deviation of 0.3.
To use the estimator developed in this paper on Eq. (21), the scalar

measurement model is recast into an affine problem by exploiting the
structure of the nonlinear function fk�ηk� as shown below:

zk � � cos�ηk � b� 1 �|������������{z������������}
A�ξ2�

�
a
c

�
|{z}

ξ1

�cos�ηk � b�|������{z������}
b�ξ2�

� vk (22)

where ξ1 � �a; c�T and ξ2 � b.
Because there is only one parameter in ξ2, we can simply sweep a

range of b to estimate Tr�R�ξ2p��. Also, Tr�R�ξ2p�� � R�ξ2p� for this
problem because the measurement at each time step is a scalar.
Figure 2 shows the estimated scalar value of Tr�R�ξ2p��. It can be

seen that ξ2p � b � 0.08 corresponds theminimum value ofR�ξ2p�.
We also observe that both b � 0.08 and its corresponding R�0.08�

Fig. 1 Pictorial depiction of the effect of choices of ξ2p on Tr�R�ξ2p��
value.
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are not same as the true values due to the measurement noise. None-

theless, there exists a uniqueminimum, and sowewill use ξ2p � 0.08

to estimate ξ1p.
With the unique measurement structure, valid linear approxima-

tion [Eq. (16)], and a unique localminimum (indicated by the positive

definiteness ofA�ξ2p� and b�ξ2p� [Eq. (18)], the parameters a and c
are estimated in first stage by solving a linear least-squares problem,

which minimizes the following cost function:

ξ̂1p � argmin
ξ1

 
1

2

XN
k�1

kzk −A�0.08�ξ1 − b�0.08�k2I
!

(23)

Because there exists a unique minimum as shown in Fig. 2, we use

ξ2p � 0.08 as the initial condition to estimate ξ12 in the second stage:

ξ̂2; R̂ � argmin
ξ12;R

1

2
��Z −Aξ11 − B�TW �Z −Aξ11 − B�� (24)

where

ξ2 � bp � 0.08 Z �
2
4 z1

..

.

zN

3
5 A �

2
64 A1�ξ2�

..

.

AN�ξ2�

3
75

B �

2
64 b1�ξ2�

..

.

bN�ξ2�

3
75 W �

2
64R−1

. .
.

R−1

3
75 (25)

The sequential quadratic programming (SQP) algorithm is used to

solve the optimization problem given by Eq. (24). Note that ξ1 is

calculated iteratively using weighted linear least squares inside the

nonlinear cost solver, and so there is no need to initialize ξ1 in the

beginning of the second stage. The term ξ1p in Eq. (23) is used to

initialize the second stage if the local minimum is not unique (dem-

onstrated later in Sec. IV). For the work reported in this paper, the

SQP is implemented using the built-inMATLAB functionfmincon
[17]. An outer while-loop outside of fmincon is written to estimate

R alternately with ξ2 until the following is satisfied (Eq. (6.41e) in

Ref. [5]):���� �r̂jj�k − �r̂jj�k−1
�r̂jj�k−1

���� < 0.05 ∀ j; j � 1; 2; : : : ; no (26)

where �r̂jj� is the estimate of the jth diagonal element of the estimate

R̂ and no is the number of the total diagonal terms. In this scalar

example, j � 1 since R is a scalar. Once the optimal ξ̂�2 and R̂ are

obtained, ξ̂�1 can be immediately solved using weighted linear least

squares:

ξ̂�1 � �ATWA�−1ATW�Z − B� (27)

We will benchmark the performance of this estimator against the

following pair of nonlinear estimators: 1) a classic, nonlinear pro-

gram that solves for ξ1 and ξ2 simultaneously and 2) the Haupt/

Kasdin two-step estimator described in Ref. [12].

A. Benchmark 1: Classic Nonlinear Programming

The first benchmark is nothing more than a solution to the opti-

mization problem posed by the left-hand side of Eq. (16). The

implementation of this benchmark differs from the algorithm pro-

posed in this paper, because the initial conditions are selected

randomly.

B. Benchmark 2: Haupt/Kasdin Two-Step Estimator

To implement the Haupt/Kasdin two-step estimator, we choose a

new set of states by a change of variables such that Eq. (21) can be

written as a linear measurement model shown below:

zk � Hkf�ξ� � Hky� vk

� �
cos ηk − sin ηk cos ηk − sin ηk 1

�|����������������������������{z����������������������������}
Hk

2
66664
a cos b
a sinb
cos b
sin b
c

3
77775

|������{z������}
y

�vk (28)

The choice of change of variable is arbitrary and leads to the

following cost function:

Jy � �Z −Hy�TR−1�Z −Hy� (29)

where H is given by

H �

2
64H1

..

.

HN

3
75 (30)

Note that, even though the choice of new variable y is arbitrary, it

actually dictates the condition number of H. If H is not well con-

ditioned, the result of the first stage can be poor. For this particular

problem, it can be problematic if the data length N is small. This is

because columns 1 and 2 of Hk are same as columns 3 and 4,

respectively, in Eq. (28). This is also a pitfall of benchmark 2. The

first-step state y is estimated using the linear least-squares method. In

the second step, the estimates of the first-step states ŷ are treated as the
new measurements in the second stage. This leads to the following

measurement equation:

ŷ � f�ξ� � e (31)

where the measurement noise e has covariance matrix Py. Once the

estimate ŷ is obtained, the following cost function isminimized using

an iterative nonlinear optimizer:

J�ξ� � �ŷ − f�ξ��TP−1
y �ŷ − f�ξ�� (32)

This second-step cost function can be nonlinear and nonconvex.

Thus, there is no guarantee that the solution is optimal. For a static

problem, this essentially reduces to solving a set of simultaneous,

nonlinear algebraic equations. In general, the solution for such

problem is not unique.

Fig. 2 Estimated Tr�R�ξ2p�� by sampling random of ξ2p for scalar
example 1.
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C. Performance Comparisons

A set of 1000 Monte Carlo (MC) simulation runs were used to

assess the performance of the algorithm developed in this paper and
compare it against the two benchmarks. For each MC run of the
proposed algorithm, the initial value of the parameter b is determined
to be 0.08 from the first stage, and used for the second step optimi-
zation. For the first benchmark (the classic nonlinear program), initial

conditions for a and cwere selected randomly fromN�0; 12� and b is
drawn from∼N�0; 0.12�. We also set the constraint for b ∈ �0; 0.2� in
the first benchmark for a fair comparison because we only sampled

ξ2p from a predetermined range (assumed to be due to prior knowl-

edge). The second benchmark (Haupt/Kasdin two-step estimator)
does not require an initialization for the first step states, but the initial
values for a, b, and c are needed for the second stage. The same initial
values from the 1000 runs in benchmark 1 were used for the initial-
ization in the second stage in benchmark 2. Benchmark 2 does not
require any constraint setting for b, according to Ref. [12].
Table 1 shows the MC results in terms of the percentage of times

the algorithm converged to the correct solution. The correction
solution is determined by taking the 2-norm between the estimated

and true parameter vector, that is, less than 0.1.Both benchmark 1 and
the proposed algorithm converged 100% of the time. Although this is
not a theoretical proof that the correct solution is guaranteed by the
algorithm developed in this paper, the comparison shows that it can
yield equivalent or favorable results when compared with other
nonlinear estimators. Table 2 shows the estimated parameter, stan-
dard deviation, and noise covariance versus the true values. The
standard deviation in the proposed estimator is calculated by taking

the square root of the diagonal of the inverse of the final Hessian
matrix, which is one of the outputs from fmincon.
Note that it is not always obvious (particularly, in actual applica-

tions) whether the estimator has converged to the correct solution.
This can be seen if we use the estimates for the parameters to
construct a predicted measurement ẑ. That is, we apply ξ̂ �
� ξ̂T1 ξ̂T2 �T to Eq. (21) to determine ẑ. Figure 3 plots 100 randomly

selected estimated outputs out of the 1000MC runs for the proposed
algorithm and the two benchmarks. In the case of the Haupt/Kasdin
two-step estimator (benchmark 2), we see that there are many
instances where predicted measurement ẑ is close to the observed
measurement z, even though the estimates of a, b, and c used to
generate ẑ are incorrect. The fact that the solution has converged to

the incorrect value is not visible in the output. This implies that the
cost function used in the second step optimization of Haupt/Kasdin
algorithm is nonconvex; it has multiple local minima that are sensi-
tive to the values of the states used to initialize the optimization
process.
The comparisons so far show that breaking the estimation process

into two steps can improve the chance of converging to the correct
solution. As the authors of Ref. [12] note, however, it may not always
be possible to do this with theHaupt/Kasdin algorithm because of the

mathematical structure of the problem at hand. To show this, we
modify the estimator problem given by Eq. (21) slightly as follows:

zk � fk�ηk� � vk � �1� a� cos�ηk�1� b� � c� � d� vk (33)

Equation (33) can be recast into the suitable form for the proposed
algorithm shown below:

zk � � cos��ηk � b� � c� 1 �|������������������{z������������������}
A�ξ2�

h
a
d

i
|{z}

ξ1

�cos��ηk � b� � c�|�������������{z�������������}
b�ξ2�

� vk

(34)

where ξ1 � �a; d�T and ξ2 � �b; c�T . An additional unknown param-
eter d has been added to the measurement model. In this case, the
Haupt/Kasdin estimator cannot be used, as the parameter b cannot be
linearly separated by change of variables from η. For completeness,
we ran another set of MC simulations to compare the performance of
the proposed estimator and benchmark 1 on the modified in Eq. (33).

We draw a and d from N�0; 12� and b and c from N�0; 0.12�,
respectively.We also re-draw from the noise term vk fromN�0; 0.32�.
Figure 4 shows estimated Tr�R�ξ2p�� from sampling b and c. It can

be seen that there is clearly a local minimum Tr�R�ξ2p�� value. There-
fore, we use the corresponding ξ2p � �bp; cp�T � �0.0556; 0.0808�T
as the initial condition for the second stage in the proposed estimator.
We set the constraint for b ∈ �0; 0.5� and c ∈ �0; 1� in benchmark 1 for
a fair comparison because we sampled those values to estimate
Tr�R�ξ2p�� for the proposed algorithm (assumed to be due to prior

knowledge). The results of this simulation are summarized in Tables 3
and 4 and Fig. 5. It can be seen that the correct percentage actually
decreased due to the highnonlinearity for benchmark1.There are still a
number of incorrect solutions, whereas the proposed algorithm still
converges to the correct value every time. We randomly plotted 100
corresponding time series of the predicted measurements out of the
1000MC runs in Fig. 5. It can be seen that the predicted measurement
(generated by estimated parameters from the nonlinear programming
approach) can be incorrect.
These two tutorial examples show that the proposed estimator can

workwell if the starting initial guess ξ2p is close to the true value. The
estimates of the first stage essentially bring the total cost very close to
the true cost, which makes the nonlinear, iterative optimization of the
second state converge consistently. It does this by eliminating the
randomness of the initial guesses for the parameters in either two
benchmark methods.

Table 1 Monte Carlo simulation results for the measurement
model in Eq. (21)

Estimation algorithm
Nonlinear

programming
Haupt/Kasdin

two-step estimator
Proposed
algorithm

Correct solution, % 100 97.2 100

Note: The estimate parameter ξ̂ is considered correct when kξtrue − ξ̂k2 ≤ 0.1.

Table 2 Estimation results from proposed

algorithm for scalar example 1

Parameter True Estimate Standard deviation

a 1 0.9512 0.0507

b 0.1 0.0812 0.0182

c 1 0.9415 0.0360

R 0.1237 0.1199 — —

Note: The trueR is calculated using the 100 noise v samples.

-4

-2

0

2

4
Benchmark 1

-4

-2

0

2

4
Benchmark 2

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4
Proposed 2-Stage

Fig. 3 Random 100 MC simulation results from 3 different methods
using Eq. (21). In this case, all 3 estimates were effective compared with
the measurement.
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IV. Flight Test Example: 5-Hole Pitot Tube Calibration

Some parameter estimation problems, such as the magnetometer
calibration and data compatibility problem, can be recast (shown in
Appendix B) and solved with the proposed estimator. The magne-
tometer calibration and data compatibility problemcan also be solved
bywell-knownmethods such as theHaupt/Kasdin two-step estimator
and output error, respectively. However, there are other parameter
estimation problems that cannot be easily solved with these known
methods, because of the sensitivity to initial values. In this section,we
demonstrate an aerospace application using the proposed estimator
that overcomes the initial-value sensitivity issue.
In particular, we exercise the estimator on calibration of a 5-hole

Pitot tube using flight test data for small UAV applications. The
problem was previously investigated in Ref. [18] and is an excellent
example that shows how conventional methods may suffer from an
incorrect local minimum, due to a poor initial parameter guess. To
briefly summarize, this is the problem of calibrating a 5-hole Pitot
tube (i.e., finding error model parameters) using an existing naviga-
tion solution, such as inertial velocity and attitude. The calibration
consists of estimating sensor scale factor, bias errors, installation
misalignment error, and steady wind vector. One challenging part of
this problem is that thewind vector cannot be assumed to be zero, due
to the relatively slow airspeed (10–25 m∕s) range relative to thewind
speed (1–10 m∕s). Single-stage estimators will not converge to the
correct solution if the initial parameter guess is not close to the
underlining true values. In particular, the typical zero-value initial
guess for wind vector might not always result in consistent estimates

(i.e., the same local minimum) due to the nonzero wind vector and

high nonlinearity in the measurement model.

Because many of the details are discussed in detail in Ref. [18], we

only present information required to facilitate understanding. The

flight test was conducted on an Ultra Stick 120 UAV. The Ultra Stick

120 was initially used as a low-cost flight test platform at NASA

Langley Research Center [19]. The Ultra Stick 120 is equipped with

a traditional Pitot-static tube, a 5-hole probe [20], a GPS (u-blox-Neo-

M8N), an Inertial Measurement Unit (IMU; Invensense MPU-9250),

and a camera. The onboard software provides a Global Navigation

Satellite System/Inertial Navigation System (GNSS/INS) navigation

solution in real time through an open-source flight control system [21].

Equations (35a–35d) show the states, input, output, and parame-

ters to be estimated. All the states in Eq. (35a) are assumed to be

known or measured from the onboard navigation solution. The input

u in Eq. (35b) is the direct pressure measurement from the 5-hole

probe. The outputz is the inertial velocity, resolved in the north–east–
down (NED) frame, which is also from the navigation solution. The

estimated parameter ξ includes airspeed scale factor λVa
and bias bVa

,

angle of attack and sideslip scale factors and biases λα; bα; λβ; bβ,
installation misalignment angle ϵϕ of the 5-hole probe rotated about

the longitudinal axis of the fixed-wing aircraft, and the steady wind

vector componentsWN;WE;WD. Those parameters are known to be

observable through various flight excitation (wind circle, pushover-

pullup, pitch chirp, yaw chirp, rudder doublet, and multisines) as

described in Ref. [18,22]. Table 5 summarizes the input design, time

specifications, and where these data are used in the proposed

algorithm [18]. Note that only those design inputs are used for the

calibration—the estimated results are validated with the entire flight

trajectory.

Fig. 4 Estimated Tr�R�ξ2p�� by sampling random of ξ2p for scalar
example 2.

Table 3 Monte Carlo simulation results for the measurement
model in Eq. (33)

Estimation algorithm
Nonlinear

programming
Haupt/Kasdin

two-step estimator
Proposed
algorithm

Correct solution, % 97.8 —— 100

Note that there is no entry for the Haupt/Kasdin estimator, because the

measurement model cannot be easily cast into a linear first step.

Note: The estimate parameter ξ̂ is considered correct when kξtrue − ξ̂k2 ≤ 0.1.

Table 4 Estimation results from proposed
algorithm for scalar example 2

Parameter True Estimate Standard deviation

a 1 0.9980 0.0474

b 0.05 0.0546 0.0059

c 0.1 0.0895 0.0351

d 1 0.9897 0.0333

R 0.1016 0.1008 — —

Note: The trueR is calculated using the 100 noise v samples.

Fig. 5 Random 100 MC simulation results from 2 different methods
using Eq. (33). Benchmark 1 occasionally fails to converge to the correct
estimates, whereas the proposed algorithm works consistently.

Table 5 Input design and time specification
for calibration

Maneuver type Time, s Usage

Wind circle 1 [384, 408.2] Stage 1
Wind circle 2 [411, 438.3] Stage 1
Pushover-pullup (POPU) [510.9, 530] Stage 1
Multisine 1 [576, 596] Stage 2
Multisine 2 [690, 711] Stage 2
Multisine 3 [752, 772] Stage 2
Multisine 4 [810, 830] Stage 2
Pitch chirp 1 [867, 887] Stage 2
Yaw chirp [980.080, 1013.595] Stage 2
Pitch chirp 2 [1041, 1061] Stage 2
Rudder doublet [1113, 1115] Stage 2
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x � �p q r bgx bgy bgz ϕ θ ψ �T (35a)

u � �PΔα PΔβ Pt Ps �T (35b)

z � �VN VE VD �T (35c)

ξ� �λVa
bVa

λα bα λβ bβ ϵϕ WN WE WD �T (35d)

Equation (36) shows the air data error model. Though linear in the

unknown parameters, it is determined to be sufficient for capturing

the error dynamics in this 5-hole probe (Sec. II in [18]).

Va � �1� λVa
�
																						
2�Pt − Ps�

ρ

s
� bVa

α � �1� λα�
PΔα

Kα�Pt − Ps�
� bα

β � �1� λβ�
PΔβ

Kβ�Pt − Ps�
� bβ (36)

Equation (37) is the wind triangle equation resolved in the NED

frame. The vector V and W are inertial vector and wind vector

resolved in the NED frame. The vector Va;cg is the airspeed vector

(which consists of the body-axis translational components) at the

center of IMU (in this case very close to the center of gravity, hence

denoted with the subscript cg), and Va;s is the airspeed vector at the

5-hole probe sensor location. The matrix Cn
b is the coordinate trans-

formation from body frame to inertial frame, and C�ϵϕ� accounts for
installation misalignment angleϕ rotated about the longitudinal axis.

Finally, ω and r are the corrected rotational velocity and displace-

ment vector from the center of the IMU in the UAV to the 5-hole

probe sensor location. The exact formulation of Cn
b, C�ϵϕ�, ω, and r

are shown in Eqs. (38) and (39).

V � Cn
bVa;cg �W � Cn

b�C�ϵϕ�Va;s − �ω�×r� �W (37)

ω�
2
4p− bp
q− bq
r− br

3
5 r�

2
4xs
ys
zs

3
5 C�ϵϕ� �

2
41 0 0

0 cos ϵϕ sinϵϕ
0 − sin ϵϕ cos ϵϕ

3
5

(38)

Cn
b

�
2
4cosθcosψ sinϕsinθsinψ−cosϕsinψ cosϕsinθcosψ�sinϕsinψ
cosθsinψ sinϕsinθsinψ�cosϕcosψ cosϕsinθsinψ−sinϕcosψ
−sinθ sinϕcosθ cosϕcosθ

3
5

(39)

We use the wind triangle equation in Eq. (37) as the measurement

equationwith assumed additiveGaussianwhite noise �vVN
vVE

vVD
�T

to represent measurement noise and to recast it into a suitable form for

the two-stage estimator as follows:

zk �
2
4VN

VE

VD

3
5

k

�
h
F

															
2�Pt−Ps�

ρ

q
F I3

i
|�����������������{z�����������������}

A�x;u;ξ2�

2
666664
λVa

bVa

WN

WE

WD

3
777775

|���{z���}
ξ1

� F

																						
2�Pt − Ps�

ρ

s
− Cn

b�ω�×r|��������������������{z��������������������}
b�x;u;ξ2�

�
2
4 vVN

vVE

vVD

3
5

k|���{z���}
vk

(40)

where the F is a 3-by-1 vector:

F � Cn
bC�ϵϕ�

2
4 cos α cos β

sin β
sin α cos β

3
5 (41)

The parameter vector ξ is now separated into ξ1 and ξ2 as shown in
Eq. (42).

ξ1 � � λVa
bVa

WN WE WD �T (42a)

ξ2 � � λα bα λβ bβ ϵϕ �T (42b)

We estimate the parameter vector ξ using the proposed estimator.
Intuitively, the proposed estimator works for this initial-condition-

sensitive calibration problem because it isolates some of the nonzero
parameters (e.g., wind vector) and minimizes the cost in the first stage
until it is close to the optimal cost.
Because the parameter ξ2 is expected to be small, or at least

bounded, we sampled 500 random λα; bα; λβ; bβ from N�0; 22� and
ϵϕ from N�0; 0.34912� (standard deviation of 20 deg), respectively.

Figure 6 shows Tr�R�ξ2p�� versus the 2-norm of ξ2p using the 500

samples of ξ2. Notice that there is no unique local minimum (a flat
regionwhen kξ2pk2 � 1 to 4) using the sampled values, whichmeans

that the second-order condition is close to zero. This also means that
the nonlinear estimator with respect to ξ2 only might not work well,
because the inner optimization in Eq. (20) may not have brought the
estimated cost close enough to the true cost, and so ξ1 cannot be

uniquely determined in the minimal residual sense. Hence, we have
to re-estimate ξ1 and ξ2 simultaneously with an initial guess ξ2p and

Fig. 6 Estimated Tr�R�ξ2p�� vs its corresponding 2-norm of ξ2p using
500 random ξ2p.

Table 6 Parameter estimate, standard deviation,
and constraint setting

Parameter Two-stage (standard deviation) Unit Constraints used

λVa
−0.1748 (0.0739) —— �−0.5; 0.5�

bVa
4.3553 (1.2672) m∕s �−5; 5�

λα 0.2982 (0.3228) —— �−0.5; 0.5�
bα −2.4854 (0.5603) deg �−5; 5�
λβ −0.2673 (0.2379) —— �−0.5; 0.5�
bβ −1.2980 (0.5164) deg �−5; 5�
ϵϕ −0.1380 (0.2699) rad �−0.2618; 0.2618�
WN −3.8038 (0.8704) m∕s �−6; 6�
WE −2.4137 (0.9956) m∕s �−6; 6�
WD −0.7168 (0.9952) m∕s �−2; 2�
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the estimated ξ̂1p from the first stage. The initial guess of ξ2p �
�0.2;−1;−0.2;−1;−0.1�T was determined to be a good initial con-

dition from the 500 samples. Note that the 2-norm of ξ2p should still

be small based on Fig. 6.

Table 6 shows the final estimated parameters and the associated

standard deviations in parentheses. It also lists the constraints used in

the second stage, whichwas determined by the physical limitations of

the system. The constraints of thewind vectorwere also refined based

on the output of the first stage.

Figures 7a and 7b show the reconstructed (estimated) and mea-

sured (GNSS/INS solution) inertial velocity components and their

error over the entire flight trajectory. Table 7 lists the root-mean-

square error values of the estimated outputs and noise standard

deviation from the estimated R. The estimated output matches well

with the measurement; the error plot is mostly bounded by the

estimated 2 standard deviations.When using the single-stagemethod

(benchmark 1—not shown), there is a large discrepancy between the

reconstructed and measured inertial velocity, though the estimator

was able to converge. This means that without good initial guess, the

single-stage estimator may not always converge to the correct mini-

mum. Estimating ξ2 only in the second stage also did not workwell in
terms of the error between measured and computed outputs.

Figure 8a shows the estimated airspeed from the 5-hole probe and

the onboard airspeed measurement from an independently calibrated

Pitot tube. The error between the estimated and measured airspeed is

shown in Fig. 8b and the root-mean-square error was calculated to be

0.1241 m∕s. The small error in airspeed when compared with

another independent source also supports our claim that the proposed

estimator worked well for this calibration problem.

a) Comparison between measured and corrected inertial velocity
components

b) Error between measured and corrected inertial velocity
components

Fig. 7 Measured vs corrected inertial velocity.

Table 7 Output root-mean-square error andmeasurement
noise stand deviation (

�������������������
diag�R�p

)

Mean square error, m∕s Estimated standard deviation, m∕s

VN 1.2564 0.9875

VE 1.1028 0.8645

VD 0.8321 0.9207

a) Comparison between calibrated Pitot tube measurement and
cablirated 5-hole probe estimate

b) Error calibrated Pitot tube measurement and cablirated 
5-hole probe estimate

Fig. 8 Measured vs estimated 5-hole airspeed measurement.
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V. Conclusions

This paper presented a two-stage estimation algorithm for solving

a class of nonlinear, parameter estimation problems that appear in

aerospace engineering applications. This class of problems appears

as a result of the mathematical form of the standard sensor error

model used. Problems having this form can be recast into a problem

that is linear with respect to a subset of the unknown parameters and

nonlinear with respect to the remaining parameters. Implementation

of the proposed estimator proceeds in two stages. In the first stage,

linear least squares is used to obtain initial values for a subset of the

unknown parameters and a residual sampling procedure is used for

selecting initial values for the rest of the parameters. In the second

stage, only a subset of the parameters needs to be re-estimated, and

the rest of the parameters can be immediately calculated viaweighted

least squares. However, if a unique local minimum condition for the

second stage cannot be determined, all the parameters have to be re-

estimated simultaneously by a nonlinear constrained optimization.

The examples provided in this paper show that this approach alle-

viates the initial condition sensitivity issue and minimizes the like-

lihood of converging to an incorrect local minimum of the nonlinear

cost function. It also provides a technique for selecting initial con-

ditions for a nonlinear measurement model that has the same canoni-

cal form. Furthermore, it was shown that, if the measurement model

and unknown parameters satisfy certain conditions (i.e., Lipschitz

continuity and finite domain), then the error in the final cost of the

optimization has an upper bound.
Although the problems presented in this paper had static param-

eters, the algorithm can be used to find initial conditions with a

mini-batch data set for dynamic problems as well. Therefore, this

algorithm is yet one more tool available to the designer of estimators

for nonlinear engineering problems.

Appendix A: Derivation of Canonical Form

The purpose of this Appendix is to show how the model structure

given by Eq. (1) arises in aerospace estimation problems. The struc-

ture arises from what we refer to in this paper as the standard sensor

errormodels. Although not referred to as such, its mathematical form

is given in Ref. [5] [Eq. (10.13)] and Ref. [7] [Eqs. (4.16) and (4.17)]

and it relates a vector measurement z ∈ R3×1 made by a sensor (e.g.,

an accelerometer triad) to the actual physical quantity being mea-

sured, denoted by y ∈ R3×1. Mathematically, it is the affinemap from

y to z given by

z � Cy� n� v (A1)

where the entries of C ∈ R3×3 represent systematic errors such as

scale factor deviations and axesmisalignments. The vector n ∈ R3×1
represents null-shifts (biases), and v ∈ R3×1 represents random, out-

put noise normally modeled as a normal distributionwith some given

covariance. The entries of the matrix C and n are usually unknown

parameters and need to be estimated. Discussion of the nature of the

entries inC,n, andv is beyond the scope of this paper, butwe refer the
interested reader to the text by Ref. [7] (Chap. 4) for more details. In

this Appendix, we are interested in the mathematical structure of C,
which is normally the product ofmultiplematrices, each representing

a different type of error.
Let us consider a typical simple case where C is the product of two

matrices: amisalignment errormatrix,Cη, and scale factor errormatrix,

Cλ. The subscript η represents the vector η � � η1 η2 η3 �T, whose
entries are small misalignment errors between the triads z and y.
Because the entries in η are normally very small (i.e., ηi ≪ 1,
i � 1; 2; 3), thematrixCη is approximated as a skew symmetricmatrix

of the vector η. Similarly, the subscript λ represents the vector of scale
factor errors λ � � λ1 λ2 λ3 �T . The scale factor errors λi ≪ 1,
i � 1; 2; 3 and appear on the diagonal of Cλ. This leads to C having

the following structure:

C � CηCλ �
2
4 1 −η3 η2

η3 1 −η1
−η2 η3 1

3
5
2
4 1� λ1 0 0

0 1� λ2 0

0 0 1� λ3

3
5

�
2
4 1� λ1 −η3 η2

η3 1� λ2 −η1
−η2 η3 1� λ3

3
5 (A2)

where we have assumed ηiηj � λiλj � λiηj � 0 for i � 1; 2; 3. Note
that if η is not small, it still can be recast into this structure.
This structure of the sensor output error affine map can be gener-

alized if we replace y by f�x; u; ξ 0� (so that it can include the known
state x as well as the unknown parameters ξ and control inputs u) and
write it as:

z �
"Y∞
m�1

NmD

#
f�x; u; ξ 0� � n� v (A3)

where Nm ∈ R3×3 are nondiagonal matrices and D ∈ R3×3 is a

diagonalmatrix. The product
Q∞

m�1 means that there can be infinitely

manyNmatrices. In real applications, usuallym < 4. The function f
still can have unknownparameters associatedwith the inputu, but the
number of unknowns in f is reduced due to factorization of the

matrices Nm. We denote the reduced parameter vector as ξ 0.
Because the unknown parameters ofD are on the diagonal and the

unknown bias vector n is additive, this can be transformed into the

following linear affine form:

z3×1 � �Q∞
m�1 NmD�f�x;u; ξ 0�� I3×3

�|���������������������������{z���������������������������}
A�ξ2�

2
6664
D�1; 1�
D�2; 2�
D�3; 3�

n

3
7775

|������{z������}
ξ1

�
Y∞
m�1

Nmf3×1�x; u; ξ 0�|���������������{z���������������}
b�ξ2�

� v (A4)

whereA�ξ2� and b�ξ2� contain all the parameters inN and f , and ξ1
represents the rest of the unknown parameters. The operator D�⋅�
takes in a vector and returns a square matrix with elements of the

vector on the diagonal. If there are more measurement vectors that

have the same structure shown in Eq. (A4), they can be concatenated

as follows:

Z3n×1 �

2
6664
z1
z2
..
.

zn

3
7775�

2
66664
A1�ξ2;1� 03×6 · · · · · · 03×6 03×6
03×6 A2�ξ2;2� 03×6 · · · 03×6 03×6

..

. ..
. ..

. ..
. ..

. ..
.

03×6 03×6 · · · · · · · · · An�ξ2;n�

3
77775

×

2
6664
ξ1;1
ξ1;2
..
.

ξ1;n

3
7775�

2
6664
b1�ξ2;1�
b2�ξ2;2�

..

.

bn�ξ2;n�

3
7775�

2
6664
v1
v2
..
.

vn

3
7775

�A�ξ2�ξ1�b�ξ2��V (A5)

where ξ1 � �ξ1;1; ξ1;2; : : : ; ξ1;n�T and ξ2 � �ξ2;1; ξ2;2; : : : ; ξ2;n�T . The
combination of ξ1 and ξ2 represents the total unknown parameters

vector ξ. Even though the total measurement vector Z in Eq. (5) has

3n number of elements, it does not have to be multiple of three,

depending on the given measurement model. For example, quatern-

ion-related measurements can have an even number of measurement

equations.
There are many parameter estimation problems that can be recast

into this canonical form in the field of aerospace engineering.
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For example, magnetometers are used extensively in navigation,

guidance, and control applications [16,23,24], and the measurement

errormodel ofmagnetometer calibration can be reformulated into the

form of Eq. (A4). Another application in aircraft system identifica-

tion is data compatibility analysis [5]. Instrumentation errors from

IMU and air data systems in both dynamic and measurement models

can also be reformulated into this canonical form. Other applications,

such as attitude estimation [25], air data calibration [18,26], and

stereo vision systems [27,28], also have similar models that can be

reformulated into this canonical form.
In Appendix B, we show how two classical estimation problems

can be reformulated into the canonical form shown in Eq. (A4). The

first example deals with the magnetometer calibration error model

taken fromRef. [23]. The second example deals with dynamic model

equations for aircraft data compatibility analysis from Ref. [5]. The

first example deals only with a measurement error model, assuming

that the time series is available. The second example considers

unknown parameters from both dynamic and measurement error

models.
It should be noted that though some problems can be recast into

canonical form shown in Eq. (A4), it does not mean that the proposed

methodwould necessarily be better than using conventional methods

for parameter estimation. For example, even though the data compat-

ibility problem can be solved by the proposed estimator, the proposed

algorithm does not prove improved accuracy comparedwith thewell-

known output-error method. What is unique about the proposed

algorithm is that it may resolve the initial-value sensitivity problem

if the measurements can be recast in suitable form, as demonstrated

by the 5-hole Pitot tube calibration example in Sec. IV.

Appendix B: Application Examples

B.1. Magnetometer Calibration

Consider the following magnetometer error equation [23]:

hm � CαCηCλh
b � n� v (B1)

where Cα, Cη, and Cλ are soft-iron, misalignment, and scale factor

error matrices, respectively. hb � � hbx hby hbz �T is the true field

magnetic vector in the body axes of the vehicle, and hm is the

measured magnetic field vector. Null shifts or hard-iron biases are

represented by the constant vector n. The effect of wide-band,

sampling, or sensor noise (uncorrelated noise) is represented by the

vector v. For details of thismodel, refer toRef. [23]. Note that amore-

complicated model can be found in Ref. [24], where time-varying

parameters are included in the measurement model. The objective is

to estimate the following model parameters:

ξ � � αij ηi λi ni �T (B2)

where i can be x, y, or z.
With simple algebraic manipulation, the following canonical form

can be obtained:

where ξ are split into ξ1 � � λi ni �T and ξ2 � � αij ηi �T . It can be
clearly seen that Eq. (B3) has the same form as Eq. (A4).

B.2. Aircraft Data Compatibility

Another common application in aerospace engineering is data

compatibility analysis. In particular, aircraft data compatibility

analysis is a process of estimating and removing systematic instru-

mentation errors that create kinematic inconsistencies in the mea-

sured sensor data. The classic example from Ref. [5] is used to show

how this application can also be transformed into the canonical form.

The typical states x, input u, measurement z, and set of typical

parameters ξ for this problem are given by the following:

x � � u v w ϕ θ ψ �T (B4a)

u � � ax ay az p q r �T (B4b)

z � �Va β α ϕ θ ψ �T (B4c)

ξ��bax bay baz bp bq br λVa
λα λβ bVa

bα bβ λϕ λθ λψ bϕ bθ bψ �T
(B4d)

where λϕ; λθ; λψ ; bϕ; bθ; bψ are scale factors and biases of Euler

angles in addition to the parameters introduced in the earlier sections.

The dynamic model for data compatibility analysis is

2
4 _u

_v
_w

3
5 �

2
4 0 r� br −�q� bq�
−�r� br� 0 p� bp
q� bq −�p� bp� 0

3
5" u

v
w

#

�
2
4 −g sin θ� ax � bax
g sinϕ cos θ� ay � bay
g cosϕ cos θ� az � baz

3
5

2
64

_ϕ

_θ

_ψ

3
75 �

2
664
1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0
sinϕ

cos θ

cosϕ

cos θ

3
775
2
4p� bp
q� bq
r� br

3
5 (B5)

Finally, themeasurementmodel outputsz are the airspeed, air flow
angles, and Euler angles:

Va � �1� λV�
																													
u2 � v2 � w2

p
� bVa

� vVa

β � �1� λβ�sin−1


v∕

																													
u2 � v2 � w2

p �
� bβ � vβ

α � �1� λα�tan−1�w∕u� � bα � vα

ϕ � �1� λϕ�ϕ� bϕ � vϕ

θ � �1� λθ�θ� bθ � vθ

ψ � �1� λψ �ψ � bψ � vψ (B6)

With some algebraicmanipulation, themeasurement outputmodel

can be recast into the canonical form as follows:
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where ξ are split into ξ1 and ξ2 as follows:

ξ1 � � λV λα λβ bV bα bβ λϕ λθ λψ bϕ bθ bψ �T
(B8a)

ξ2 � � bax bay baz bp bq br �T (B8b)

The airspeed Vk, angle of sideslip βk, and angle of attack αk in

A�x; u; ξ2� and b�x; u; ξ2� are calculated by the state xk shown in

Eq. (B9).

Vk �
																													
u2k � v2k � w2

k

q
βk � sin−1

�
vk∕

																													
u2k � v2k � w2

k

q 
αk � tan−1�wk∕uk� (B9)

To use the proposed estimator, all the states xk for k � 1; : : : ; N
have to be known, which is a downside of this algorithm. Also, data

compatibility problems are not particularly sensitive to initial con-

ditions. It was well known that the zero initial condition is sufficient

to solve such problems via output error. Nevertheless, the proposed

estimator is a viable and convenient alternative.
Both magnetometer calibration and aircraft data compatibility

analysis examples reveal that a common nonlinear parameter esti-

mation problem can be transformed into an affine linear model as

shown in Eq. (A5). The unknown parameters are separated into two

sets with simple algebraic manipulation. With this canonical form,

the proposed estimator can be used to solve the parameter estimation

problem accurately and consistently.
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