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‘Species distribution modeling’ was recently ranked as one of the top five ‘research 
fronts’ in ecology and the environmental sciences by ISI’s Essential Science Indicators, 
reflecting the importance of predicting how species distributions will respond to 
anthropogenic change. Unfortunately, species distribution models (SDMs) often 
perform poorly when applied to novel environments. Compounding on this problem 
is the shortage of methods for evaluating SDMs (hence, we may be getting our 
predictions wrong and not even know it). Traditional methods for validating SDMs 
quantify a model’s ability to classify locations as used or unused. Instead, we propose to 
focus on how well SDMs can predict the characteristics of used locations. This subtle 
shift in viewpoint leads to a more natural and informative evaluation and validation 
of models across the entire spectrum of SDMs. Through a series of examples, we 
show how simple graphical methods can help with three fundamental challenges of 
habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. 
Identifying habitat characteristics that are not well-predicted by the model can provide 
insights into variables affecting the distribution of species, suggest appropriate model 
modifications, and ultimately improve the reliability and generality of conservation 
and management recommendations.

Introduction

A variety of data collection and statistical methods are available for linking individuals, 
populations, and species to the habitats they occupy. Data collection methods range 
from design-based or opportunistic surveys that result in a set of pooled locations 
(ignoring any temporal component) (Edwards et al. 2006, Skov et al. 2016) to telem-
etry studies that result in many locations over time for a small number of individuals 
(Boyce and McDonald 1999, Pearce and Boyce 2006). A growing number of methods 
have been proposed for analyzing these different data types, and ‘species distribution 
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modeling’ (SDM) was recently ranked as one of the top five 
‘research fronts’ in ecology and the environmental sciences by 
ISI’s Essential Science Indicators (Renner and Warton 2013). 
Regardless of the method used, the underlying objectives 
are the same: to understand how resources, risks, and envi-
ronmental conditions influence distribution and abundance 
patterns (Mayor et al. 2009, Matthiopoulos et al. 2015). A 
more challenging, but equally important goal is to infer how 
various perturbations, including climate change and habitat 
management actions, influence these patterns (Matthiopou-
los et al. 2011, Renner and Warton 2013). Unfortunately, 
SDMs frequently perform poorly when applied to novel 
environments (Elith et al. 2010, Matthiopoulos et al. 2011, 
Heikkinen et al. 2012, Wenger and Olden 2012). If we are 
going to use models to inform decision making, we need to 
have confidence in their predictions, which in turn requires 
that we have appropriate methods for model evaluation. 
Importantly, methods that provide insights into why a model 
performs poorly (e.g. missing predictors, incorrect functional 
form, multicollinearity) are more useful than methods that 
provide only an overall measure of fit.

Much recent literature on model evaluation has focused 
on the interrelated concepts of model validation, calibration, 
and discrimination (Pearce and Ferrier 2000, Phillips and 
Elith 2010, Steyerberg et al. 2010, Harrell 2013, Chivers et al. 
2014). Model validation is the process of assessing agreement 
between observations and fitted or predicted values. When a 
model (or set of models) is chosen via a data-driven process 
(e.g. transformations are considered, outliers are inspected 
and potentially dropped, and multiple models are compared 
before one or more are selected for inference), evaluations 
should ideally use out-of-sample data (i.e. data not used 
to arrive at the model(s); Araújo et al. 2005, Harrell 2013, 
Muscarella et al. 2014, Naimi and Araújo 2016). The use 
of out-of-sample data is also critical when evaluating model 
transferability and is especially challenging if the explana-
tory variables are correlated among themselves. Prediction 
error will typically be greater with the new data set unless 
the correlation among explanatory variables is the same as 
in the data originally used for model fitting (Dormann et al. 
2013). When there is close agreement between observed and 
fitted/predicted values, we say the model is well calibrated; 
calibration therefore refers to steps taken to improve agree-
ment between observed and predicted values (e.g. one may 
choose to ‘shrink’ regression parameters towards zero to 
improve out-of-sample predictions when models have been 
overfit; Harrell 2013, Street et al. 2016). Discrimination, by 
contrast, describes a model’s ability to rank sample units in 
terms of their likely outcomes (Fielding and Bell 1997, Pearce 
and Ferrier 2000, Fawcett 2006, Steyerberg et al. 2010).

Calibration and discrimination often go hand-in-hand, 
though this need not be the case. A model may be well-cal-
ibrated but fail to discriminate well if it gives unbiased but 
highly imprecise estimates. A nice exemplification is given 
by Ellner et al. (2002), who demonstrated that estimates of 
extinction probabilities from population dynamic models 

are frequently too imprecise to rank individual populations 
in terms of risk even though they may provide an accurate 
estimate of the proportion of populations that will cross a 
quasi-extinction threshold. Conversely, a model may be 
poorly calibrated, yet have strong discriminating capabili-
ties (Phillips and Elith 2010, Jiménez-Valverde et al. 2013). 
For instance, population indices may accurately rank sites 
in terms of their abundance, provided variation in detec-
tion probabilities is small relative to variation in abundance, 
even though indices are biased estimators of population size 
(Johnson 2008). Researchers routinely use methods such as 
the area under the receiver operating curve (AUC) to evaluate 
discrimination of SDMs (Meyer and Thuiller 2006, Heikki-
nen et al. 2012, Jiménez-Valverde 2012), whereas calibration 
methods, the focus of this paper, are equally important but 
underutilized (Phillips and Elith 2010).

We consider methods for validating two general classes of 
models. The first includes a variety of methods appropriate 
for survey data pooled over time, in which observed loca-
tions are compared to a set of ‘background’ (or ‘control’ or 
‘available’) locations generated by randomly or systematically 
sampling from an area that encompasses the observed loca-
tions. Effectively, this approach treats the data as if they were 
cross-sectional (i.e. the temporal information in the data is 
ignored when making inferences). Animal telemetry data are 
also often analyzed in this way, particularly when locations 
are collected infrequently or if the researcher is interested in 
habitat use at broad spatial scales (e.g. second or third orders 
of selection; Johnson 1980). Parallel development of meth-
ods for survey data and telemetry data has led to slightly dif-
ferent nomenclatures. The combination of the observed and 
background points is typically referred to as either presence-
background (survey data) or use-availability (telemetry) data 
and the fitted models as either species distribution models 
(survey data) or habitat- or resource-selection functions or 
models (telemetry data). Though a variety of modeling 
approaches have been used in this context, most – MaxEnt 
(Elith et al. 2011), spatial logistic regression (Baddeley et al. 
2010), weighted distribution theory with an exponential 
link function (Lele and Keim 2006), and resource utilization 
distributions (Millspaugh et al. 2006) – can be shown to be 
equivalent to fitting an inhomogeneous spatial point pro-
cess model (Warton and Shepherd 2010, Aarts et al. 2012, 
Fithian and Hastie 2013, Hooten et al. 2013, Renner and 
Warton 2013).

The second class of models, developed for fine-scale 
telemetry data, also compares observed locations to a set of 
background points, but these background points are con-
strained to areas that are accessible to the animal from the 
previously observed location (a function of animal move-
ment characteristics and sampling frequency). Each observed 
location is ‘paired’ with a set of background/available points, 
resulting in highly stratified data. These data types are typi-
cally analyzed by fitting a conditional logistic regression (or 
equivalently, a discrete choice) model (Arthur et al. 1996, 
Manly et al. 2002), and the fitted models are referred to as 
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step-selection functions (SSF) (Fortin et al. 2005, Forester 
et al. 2009, Thurfjell et al. 2014) or integrated step-selection 
functions (Avgar et al. 2016). Although these two classes of 
models share some features, calibration techniques developed 
for presence–absence (Harrell 2013) or presence–background 
data (Boyce et al. 2002, Johnson et al. 2006, Phillips and 
Elith 2010) do not easily generalize to step-selection func-
tions because the data used to fit the latter models are highly 
stratified. Further, little work has been done to develop meth-
ods for validating step-selection models (but see Street et al. 
2016).

The popularity of SDMs, their propensity to fail when 
used to predict distributions in novel environments, and the 
current lack of sufficient diagnostics for evaluating models, 
especially those developed to analyze fine-scale telemetry 
data, are causes for concern. Here, we introduce a new 
method for model validation that can be applied across the 
entire spectrum of SDMs. Rather than focus on validating 
a binary response variable (Y  1 for presence locations and 
0 for background locations), we proposed to validate mod-
els by comparing distributions of the explanatory variables 
at the observed and predicted presence locations – i.e. the 
habitat characteristics associated with the used locations. 
These plots, which we refer to as used-habitat calibration 
plots or UHC plots, complement existing approaches for 
validating traditional (non-stratified) species distribution or 
habitat selection models and also fill a void by providing a 
way to validate step-selection functions. Through a series 
of simulated and empirical examples, we show how UHC 
plots can help with three fundamental challenges of habitat 
modeling: identifying missing covariates, non-linearity, and 
multicollinearity.

Pooled-survey data examples

We begin by considering two simple simulation examples 
where the variables influencing species distribution pat-
terns are known. These examples are useful for testing if 
model validation tools return sensible and informative results 
under known model misspecifications. In particular, we will 
use these examples to explore the ability of model valida-
tion tools to diagnose a missing predictor or the need for a 
non-linear term. To understand the data-generating process, 
let f  a(x) describe the available or background distribution 
of covariate(s) x in environmental space (i.e. f  a(x) gives the 
relative frequency with which different values or levels of x 
occur across the entire landscape). Further, let f  u(x) describe 
the distribution of the covariate(s) at used (i.e. presence) 
locations.

In our first example, constructed to explore the impact 
of a missing predictor, the species distribution was driven 
by elevation (x1) and precipitation (x2), with the species 
preferring sites at higher elevations and with lower levels 
of precipitation. In this example, the distribution of x1 and 
x2 in environmental space was assumed to be normal and 
centered to have mean 0: f  a(x1, x2)  N(0,Σ). We considered 

three different data-generating scenarios in which we set 
var(x1)  var(x2)  4, but varied cor(x1,x2)  ρx x1 2,  to explore 
how the effect of a missing predictor depends on the correla-
tion among predictor variables. In the first scenario, we set 
ρx x1 2

0, =  in both training and test data sets. In the second 
scenario, we set ρx x1 2

0 3, .= −  in both training and test data 
sets, and in the third scenario, we set ρx x1 2

0 3, .=  in the train-
ing data set and ρx x1 2

0 3, .= −  in the test data set. For each 
of these three scenarios, we formed training data by choos-
ing 100 presence locations, with the probability of selection 
proportional to exp (0.5x1–x2). We combined these locations 
with a set of 10 000 randomly generated background points 
from f  a(x1,x2). We set Y  1 for the 100 presence locations 
and Y  0 for the 10 000 background locations. We used the 
same approach to form a test data set of the same size (100 
presence and 10 000 background locations).

We fit two different logistic regression models to the 
training data. First, we fit a model that included only 
elevation. Second, we fit a model that included both eleva-
tion and precipitation (the correct model). The estimated 
regression coefficients for elevation and precipitation 
were close to the data-generating values of 0.5 and –1 
whenever we fit the correct model (i.e. y ~ elev  precip;  
Table 1). The coefficient for elevation was also close to the 
data-generating value of 0.5 if we fit the model without 
precipitation, provided ρx x1 2

0, .=  By contrast, the coeffi-
cient for elevation in the model without precipitation was 
too high when ρx x1 2

0 3, .= −  and too low when ρx x1 2
0 3, .=   

(Table 1). This type of bias, referred to as omitted-vari-
able bias, is well-known and is a function of cor(x1,x2) and 
cor(y,x2|x1) (Clarke 2005).

We considered a second example to explore the effect of 
model misspecification, where the species distribution exhibits 
a non-linear response to temperature (x3). The optimal tem-
perature for this species was set at x3  1, with habitat suit-
ability dropping off for warmer and colder temperatures. We 
again considered centered values of x3, assumed to be nor-
mally distributed on the landscape with f  a(x3)  N(0,4). We 
formed test and training data using the same approach as in 
the previous example, but with the probability of selecting 
locations proportional to exp( )2 3 3

2x x− .

Table 1. Estimated regression parameters ( β� ) and their standard 
errors (SE) for logistic regression models fit to training data in the first 
cross-sectional data simulation. The marginal distribution of 
elevation (x1) and precipitation (x2) on the landscape was given by a 
multivariate normal distribution with mean vector  (0,0), and 
var(x1)  var(x2)  4. We considered three different data-generating 
scenarios in which we varied cor(x1,x2) (  0, –0.3, or 0.3). The true 
species distribution was proportional to exp(0.5x1–x2).

Y~ elev Y~ elev  precip

cor(x1,x2) β� x1
SE β� x1

SE β� x 2 SE

0.00 0.42 0.05 0.42 0.06 –1.04 0.07
–0.30 0.80 0.06 0.52 0.06 –0.99 0.07
0.30 0.27 0.05 0.57 0.06 –0.97 0.06
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We fit a model with only a linear effect of temperature on 
the logit scale and another that also included a quadratic term 
(the correct model). The coefficient for temperature was too 
low when we fit the model with only temperature, but the 
coefficients were close to the data-generating values of 2 and 
–1 when both temperature and temperature2 were included 
in the model (Table 2).

In subsequent sections, we evaluate each model’s ability 
to predict presence locations in the test data. R code (R Core 
Team) for generating the data and performing all analyses 
in the paper, along with any associated output, have been 
archived within the Data Repository for the Univ. of Min-
nesota: < http://doi.org/10.13020/D6T590 > (Fieberg et al. 
2016). We have also included functions for simulating and 
analyzing these data in an R package named ‘uhcplots’ hosted 
on GitHub (Fieberg and ArchMiller 2016). This package 
can be downloaded using the install_github() function in 
the devtools library: devtools::install_github(“aaarchmiller/
uhcplots”).

Calibration plots

Methods for validating models include goodness-of-
fit tests, diagnostic plots to assess model assumptions 
(e.g. residual versus fitted plots), and calibration plots 
of observed versus predicted values, where the latter are 
formed using cross-validation or bootstrapping (Phil-
lips and Elith 2010, Harrell 2013). Calibration plots are 
particularly useful since they provide an honest measure 
of model fit by using different data sets to fit and then 
evaluate the model. Unfortunately, calibration plots have 
received relatively little attention in the species distribu-
tion literature (but see Phillips and Elith 2010). Because 
many ecologists are unfamiliar with calibration plots, we 
will work towards our suggested approach by first detail-
ing the steps necessary for producing a calibration plot 
when logistic regression is used to model binary (presence–
absence) data. We then describe how calibration plots have 
been modified to work with presence–background data 
and illustrate these methods in conjunction with the above 
simulated data examples. With this foundation in place, 
we develop an alternative method of model calibration 
that focuses on the distribution of habitat characteristics at 
locations where the species is present.

Calibration plot for presence–absence data

Let Y represent the presence or absence of a species, a Bernoulli 
random variable with mean that is dependent on covari-
ates X, E[Y|X]  P(Y  1|X)  p. Further, let (xtrain,ytrain) refer 
to predictor and response data, respectively, used to fit the 
model and (xtest,ytest) refer to predictor and response data used 
to validate model predictions. In real applications, test and 
training data may be formed by data splitting, using k -fold 
cross-validation (Muscarella et al. 2014), or by sampling data 
with replacement multiple times (i.e. separate bootstrap sam-
ples; Harrell 2013, Fieberg and Johnson 2015). Alternatively, 
the model may be validated with data collected at another 
point in time or space, leading to a more stringent test of a 
model’s predictive ability. To produce a calibration plot with 
presence–absence data:

1) Estimate regression parameters, β�
train , by fitting a logis-

tic regression model to the training data (xtrain,ytrain).
2) Form predictions for the test data using xtest and the 

parameters estimated from the training data (i.e. β�
train

 from 

step [1]): π
β

β
�

�

�
test

test train

test train

x

x
=

( )
+ ( )
exp

exp1
.

3) Form a calibration plot using one of three options. 
Option 1: bin the ytest data (e.g. based on quantiles of π� test ). 
Plot the proportion of values where ytest  1 in each bin versus 
mean π� test  in each bin. Option 2: fit a new logistic regres-
sion model to the test data, considering a single predic-
tor, xtest train

β�  (i.e. the logit of the predicted values): logit 

E Y X b b xtest test test train
| ( ) = + ( )0 1 β� . Plot the fitted line with 

confidence intervals. Option 3: fit a more flexible, non-linear 
model (e.g., using regression or smoothing splines): logit 

E Y X f xtest test test train
| ( ) = ( )β� , and plot the fit of the model 

with confidence intervals.
If the model is well-calibrated, we should see the binned 

values (option 1) or the fitted curves (options 2 and 3) line 
up well with the 1:1 line. Further, estimates of (b0,b1) should 
be close to (0, 1) (option 2) if the model is well-calibrated. If 
estimates of (b0,b1) are far from (0, 1), then one may choose 
to use (b0,b1) to re-calibrate the model (Giudice et al. 2012, 
Harrell 2013).

Calibration plots for presence-background data

Presence-background data differ from presence–absence data 
in that the zeros (the background data) may be utilized by 
the species (i.e. they are not ‘true absences’). Boyce et al. 
(2002) and Johnson et al. (2006) developed a calibration plot 
for presence-background data that has been widely used to 
validate habitat selection models fit to telemetry data using 
logistic regression. Rather than use predicted probabilities 
from the fitted logistic regression model in step [2], Boyce 
et al. (2002) suggested using w x xtest train test train

β β� �( ) = ( )exp  
for model calibration. Although this approach might at 

Table 2. Estimated regression parameters ( β� ) and their standard 
errors (SE) for logistic regression models fit to training data in the 
second cross-sectional data simulation. The marginal distribution of 
x3 on the landscape, f a(x3), was Normal: f a(x3)  N(0,4). The relative 
probability of use (or presence) was proportional to exp 2 3 3

2x x−( ).
Model β� x3

SE β� x3
2 SE

y x∼ 3 0.24 0.05

y x x∼ 3 3
2+ 2.21 0.35 –1.05 0.17
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first appear to be ad hoc, it can be justified by recognizing 
that most methods for analyzing presence-background data, 
including logistic regression, can be shown to be equivalent 
to fitting an inhomogeneous Poisson process (IPP) model 
(Warton and Shepherd 2010, Aarts et al. 2012, Fithian and 
Hastie 2013, Hooten et al. 2013, Renner and Warton 2013). 
The likelihood for an IPP model, conditional on nu total used 
(i.e. presence) locations from area A, is given by:

L y x
x

x s ds
i i

i

n
i

A

u

| ,
exp

β
β

β
( ) =

( )
( )( )=

∏
∫1

exp
 (1)

The na randomly (or systematically) sampled available (i.e. 
background) points serve to approximate the integral in the 
denominator:

L y x
x

w x
i

i

n
i

n n
j j

u

a u
( | )

( )

( )
i

j

,
exp

exp1

β
β

β
≈

=
=

+∏ ∑ 1

 (2)

where the wj are quadrature weights used to approximate the 
integral in Eq. (1) using numerical integration techniques 
(ideally, the number of background points should be large 
enough that regression parameter estimators do not change 
with the addition of more points; Warton and Shepherd 
2010). Thus, conditional on the set of used and available 
points (nu, na), the probability of selecting each point is pro-
portional to exp(xb).

Boyce et al. (2002) and Johnson et al. (2006) suggested 
using k-fold cross-validation to form a binned calibration 
plot. After forming predictions via cross-validation, the plot 
is constructed via the following steps.

1) Bin the ytest data using quantiles of w xtest train
β�( )  and cal-

culate the mean value of w xtest train
β�( )  in each bin, wi  (i  1, 

2 …, nbins).
2) Determine the number of used locations in each  

bin, nu
i .

3) Determine the expected number of used locations in 

each bin, E n n
w

w
u
i

u
test i

ik

nbins
[ ] =

=∑ 1

, where nu
test  is the total num-

ber of used (i.e. presence) locations in the test data set. (Note: 
this equation can be modified slightly if the number of loca-
tions in each bin is not constant, see Johnson et al. 2006.)

4) Plot nu
i  versus E nu

i[ ]  along with a 1:1 line. As with 
presence–absence calibration plots, models with adequate fit 
should result in points that largely follow the 1:1 line.

Boyce et al. (2002) also advocated for calculating the 
Spearman correlation between nu

i  and E nu
i[ ] . As noted by 

Phillips and Elith (2010), the Spearman correlation provides 
an alternative, non-parametric method for assessing calibra-
tion. Johnson et al. (2006) also suggested fitting a linear 
regression model relating nu

i  to E nu
i[ ] , which should result 

in intercept and slope estimates close to 0 and 1, respectively, 
if the model is well-calibrated. Lastly, we note that Phillips 
and Elith (2010) proposed a similar presence-background 
calibration plot using statistical smoothers to evaluate fit, 
thus avoiding the need to bin the data.

Application of presence-background calibration plots to 
pooled-survey data examples

Following Johnson et al. (2006), we constructed presence-
background calibration plots for the models fit to each of 
the simulated pooled-survey data sets (Fig. 1, 2). In the 
first example, both models resulted in calibration plots that 
roughly followed the 1:1 line as long as ρx x1 2,  was the same in 
the test and training data (Fig. 1A–D). When ρx x1 2,  differed 
between the test and training data, the calibration plot for the 
elevation-only model differed significantly from the 1:1 line 
(Fig. 1E), whereas the correct model remained well-calibrated 
(Fig. 1F). Another noteworthy feature of the calibration 
plots, particularly those for the correct model (Fig. 1B, D, F) 
or the elevation-only model in the case where ρx x1 2,   –0.3 
for training and test data (Fig. 1C), is a clustering of observed 
and expected counts near 0, except for the largest bin. This 
tight clustering reflects the high discriminatory ability of the 
models (i.e. they are able to clearly identify those points that 
have the highest relative probability of use).

In the second example, the model containing only a linear 
effect of temperature resulted in a calibration plot with points 
that were widely scattered, and although the regression line 
was close to the 1:1 line, the R2 is 0.04, suggesting the model 
did a poor job of predicting presence points in the test data 
(Fig. 2A). By contrast, the points in the calibration plot for 
the correct model, containing both temperature and tem-
perature2, closely followed the 1:1 line (R2  0.99; Fig. 2B) 
suggesting this model was well-calibrated.

In summary, using presence-background calibration plots, 
we were able to correctly identify poorly calibrated models 
when we were missing an important predictor (but only when 
the correlation among predictor variables changed between 
training and test data sets; Fig. 1E) or when we needed to 
include a non-linear term (Fig. 2A). By themselves, however, 
these plots provide little additional insight into what might 
be causing the lack-of-fit or ways that the model might be 
improved.

Used-habitat calibration (UHC) plot

A variety of residual plots (e.g. partial residual plots, added 
variable plots) have been developed to evaluate the poten-
tial for missing predictors or the need for non-linear terms 
in linear and generalized linear models (Kutner et al. 2005, 
Moya-Laraño and Corcobado 2008). Here, we develop a sim-
ple method for producing calibration plots that accomplish 
these same goals, but we use out-of-sample predictions. Spe-
cifically, we develop calibration plots that evaluate how well 
a model predicts the characteristics associated with the used 
(presence) locations. We call this type of plot a used-habitat 
calibration plot (or UHC plot) and describe the steps for pro-
ducing such plots below (see Fig. 3 for an illustration of the 
steps in the context of the first simulation example using the 
model with elevation but without precipitation).
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(A) (B)

(C) (D)

(E) (F)

Figure 1. Presence-background binned calibration plots using the method outlined in Johnson et al. (2006) applied to simulated data for a 
species whose distribution was driven by elevation (x1) and precipitation (x2). The marginal distribution of x1 and x2 on the landscape, 
fa(x1,x2), was Normal: fa(x1,x2)  N(0,Σ). We considered three different data-generating scenarios in which we set var(x1)  var(x2)  4, but 
varied cor(x1,x2)  ρx x1 2,  (represented by separate rows of panels). The relative probability of use (or presence) was proportional to exp 
(0.5x1–x2). Panels depict observed versus expected numbers of presence locations within 10 bins formed using estimated relative probabili-
ties of selection, w x xtest train test train

( ) exp( ),β β� �=  where xtest is a matrix of covariates in the test data set and β�
train  is a vector of regression parameter 

estimates obtained by fitting one of two logistic regression models to the training data (the two models are represented by the different 
columns). Overlaid is a regression line (black line with shaded 95% confidence intervals) relating observed and expected numbers of pres-
ence locations in each bin. A well-calibrated model should closely follow the 1:1 line (dashed line).
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Let x represent the full suite of explanatory variables 
included in the fitted model, nu

test  the total number of used 
(i.e. presence) locations in the test data set, and z the covari-
ates of interest (these may be covariates already included in 
the model or additional covariates that may be under consid-
eration for inclusion in the model). The dimension of z may 
be greater than that of x, for example, if one chooses to begin 
with a simple model before progressively considering more 
complex models with additional covariates. Further, z may 
contain covariates that are available in the test data but are 
absent from the training data (e.g. if the model is applied to a 
new site where additional covariate data have been collected). 
In the example illustrated in Fig. 3, x includes only elevation, 
but z includes both elevation and precipitation.

1) Summarize the distribution of z at the used (i.e. pres-
ence) points in the test data set, f  u(z). In our examples, we 
use a kernel density estimator to represent f  u(z) (solid black 
lines/density plots in Fig. 3; Wand and Jones 1994). Simi-
larly, summarize the distribution of z at the available (i.e. 
background) points in the test data set, f  a(z) (dashed red 
lines/density plots in Fig. 3). Differences between these two 
densities signal that the covariate will be an important predic-
tor of the species distribution.

2) Fit a model to the training data set. Store β�  and côv (β� ) 
to characterize the uncertainty in the parameters (ignoring 
the intercept if using logistic regression). Assuming we have 
a large enough sample for β�  to be approximately normally 
distributed, we can draw samples from a multivariate nor-
mal distribution, N ( , )β β� � �cov ( ) , to account for uncertainty in 
the estimated parameters. This uncertainty may alternatively 
be captured using a non-parametric bootstrap or via samples 
from a posterior distribution (if implementing the model in 
a Bayesian framework); bootstrapping could also be used to 

account for parameter uncertainty in machine learning appli-
cations (e.g. models fit using random forests, artificial neural 
networks, etc.). We will refer to the distribution capturing 
uncertainty in β�  as the joint parameter distribution to recog-
nize that this will be a multivariate distribution if more than 
one covariate is included in the model.

3) Do the following M times (with loop index i): a) to 
account for parameter uncertainty, select new vector of 
parameter values randomly from their joint parameter dis-
tribution, bi. b) Estimate the relative probability of selection 
for the test data (given by Eq. (2)): w x xtest i test i( ) exp( ).β β=  
c) Select a simple random sample of nu

test  observations from 
the combined (presence and background) test data, with 
probabilities of selection proportional to w xtest i( )β  from step 
[3b]. d) Summarize the distribution of z associated with the 
points chosen in step [3c], f z

u

i
� ( )  (gray lines/density curves 

in Fig. 3).
4) Compare the observed distribution of covariate values 

at the presence points, f  u(z) (black solid lines) from step 
[1], to the predicted distribution of these characteristics, 
f z

u

i
� ( )  (gray bands) from step [3], across the M simulations. 
One option is to overlay f  u(z) (from step [1]) on a 95% 
simulation envelope constructed using the f z

u

i
� ( )  (Fig. 3). 

Alternatively, one might choose to plot the 2.5th and 97.5th 
quantiles of f z f zu u

i( ) ( )− � . We include functions in the 
‘uhcplots’ package for constructing these plots and illustrate 
the latter type of plot in supplementary files archived with 
the Data Repository for the Univ. of Minnesota (Fieberg and 
ArchMiller 2016, Fieberg et al. 2016).

Application of UHC plots to pooled-survey data examples
To create UHC plots for the pooled-survey data examples, we 
constructed 1000 predicted distributions of habitat covariates 

(A) (B)

Figure 2. Presence-background binned calibration plots using the method outlined in Johnson et al. (2006) applied to simulated data for a 
species whose distribution was driven by temperature (x3) and temperature2. The marginal distribution of x3 on the landscape, f a(x3), was 
Normal: f a(x3)  N(0,4). The relative probability of use (or presence) was proportional to exp( )2 3 3

2x x−  Panels depict observed versus 
expected numbers of presence locations within 10 bins formed using estimated relative probabilities of selection, w x xtest train test train

( ) exp( ),β β� �=  
where xtest is a matrix of covariates in the test data set and β�

train  is a vector of regression parameter estimates obtained by fitting one of two 
logistic regression models to the training data (the two models are represented by the different columns). Overlaid is a regression line (black 
line with shaded 95% confidence intervals) relating observed and expected numbers of presence locations. A well-calibrated model should 
closely follow the 1:1 line (dashed line).
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at the presence points in the test data set (i.e. M  1000 in 
step [3]) using the models fit to the training data, accounting 
for uncertainty in β�  by drawing new values in each simula-
tion from a multivariate normal distribution (the asymptotic 
distribution of β� ; step [3a]). We compared observed (black 
solid lines) and predicted distributions (gray bands represent-
ing 95% simulation envelopes) of elevation and precipitation 
(Fig. 4) and temperature (Fig. 5) at the presence locations. 
We also overlaid distributions of elevation, precipitation, 
and temperature at the background locations, f  a (red dashed 
lines; Fig. 4, Fig. 5). Note that the distributions of elevation 
and precipitation at the presence locations (solid black lines) 
were shifted to the right and left, respectively, relative to the 
background distributions of these covariates (red dashed 
lines) (Fig. 4). These results reaffirm that this species tends to 
be found at locations with higher elevations and lower levels 
of precipitation. In the second example, the distribution of 

temperature at the used locations was also shifted to the right 
relative to the background distribution (Fig. 5). In addition, 
the used distribution was much more peaked compared to 
the background distribution of temperature, which suggests 
that this species prefers a more narrow range of temperatures 
than represented by the background locations.

In the first example, the UHC plots provided evidence 
that the correct model with both elevation and precipitation 
was well-calibrated across all three data-generating scenarios 
(Fig. 4C–D, G–H, K–L) because the distributions of eleva-
tion and precipitation at the presence locations (solid black 
lines) fell mostly within the simulation envelopes generated 
by the fitted model (gray bands). By contrast, the elevation-
only model never accurately predicted the distribution of 
precipitation values at the presence locations (Fig. 4B, F, J). 
On the other hand, it predicted the distribution of elevation 
at the presence locations whenever ρx x1 2,  was the same for 
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Figure 4. Used-habitat calibration (UHC) plots for the first simulation example where the species distribution was driven by elevation (x1) 
and precipitation (x2). The marginal distribution of x1 and x2 on the landscape, f a(x1,x2) (red dashed lines), was Normal: f a(x1, x2)  N(0,Σ). 
We considered three different data-generating scenarios in which we set var(x1)  var(x2)  4, but varied cor(x1,x2)  ρx x1 2,  (represented by 
separate rows of panels). The relative probability of use (or presence) was proportional to exp(0.5x1–x2). The observed distribution of eleva-
tion and precipitation at the presence (i.e. used) points in the test data set is given by the solid black lines, with a 95% simulation envelope 
for these distributions given by the gray bands. Predictive distributions were formed using one of two models fit to training data, a model 
with elevation only (left two columns) or elevation and precipitation (the correct model; right two columns). A model is well-calibrated if 
the observed distributions (solid black lines) fall within the simulation envelopes.
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both training and test data sets (Fig. 4A, E). Lastly, the ele-
vation-only model failed to predict either the distribution 
of elevation or precipitation at the presence locations when 
the correlation between elevation and precipitation differed 
between the training and test data (Fig. 4I, J). It is worth 
noting that in the case where ρx x1 2

0 3, .= −  for both train-
ing and test data sets, the elevation-only model’s predictions 
were well-calibrated (Fig. 1C, Fig. 4E) even though the logis-
tic regression parameter estimate for elevation was too large 
(0.80, SE  0.06) relative to the data-generating value (0.5) 
(Table 1). These latter two results serve as a nice reminder 
that regression coefficients reflect partial correlations that are 
influenced by the suite of predictors included in the model, 
and are not causal effects (Fieberg and Johnson 2015). Fur-
thermore, models may predict well in the presence of col-
linearity only when the correlation among predictors remains 
the same in training and test data (Dormann et al. 2013).

In the second simulation example, we fit a model with only 
a linear effect of temperature on the logit scale and another 
that also included a quadratic term (the correct model). 
When the model included only temperature, the coefficient 
for temperature was too low, but the coefficients were close to 
the data-generating values of 2 and –1 when both tempera-
ture and temperature2 were included in the model (Table 2). 
The predicted distribution for temperature was rather broad 
and similar to the available distribution when only a linear 
effect of temperature was included in the logistic regression 
model (Fig. 5A). By contrast, the distribution of temperature 
values at presence points was rather peaked, with values of 
x1 –2 or  2 rarely used (Fig. 5A). The extreme avoidance of 
low and high values of temperatures suggests that a quadratic 
effect of temperature might be needed. When we included 
the quadratic term for temperature in the logistic regression 
model, the distribution of temperature values at the observed 
locations fell within the 95% simulation envelope (Fig. 5B), 
confirming that this model was well-calibrated.

In summary, UHC plots helped to identify a missing 
predictor (precipitation) and also the need for a non-linear 
term (for temperature). It is also noteworthy that the miss-
ing predictor was identified in two scenarios where the 
model appeared well-calibrated when using a traditional 
presence-background calibration plot (Fig. 1A, C and  
Fig. 4B, F) (both scenarios involved predictive distributions 
in cases where ρx x1 2,  remained the same in training and test 
data sets).

Evaluating spatial predictions and model transferability

An important goal of most SDM applications is to predict 
species distributions in novel landscapes, which requires that 
models are ‘transferable’ to other sites, environments, and 
time periods. If we have location data from multiple sites, 
then we can evaluate transferability by fitting a model to 
some sites and then predicting the distribution of locations at 
the others (Matthiopoulos et al. 2011). UHC plots can then 
be used to identify areas in space where the model does a poor 
job of predicting. To accomplish this goal, we can include x 
and y spatial coordinates in z, the matrix of habitat character-
istics we wish to predict at the out-of-sample used locations.

To illustrate this idea, we return to our simulation exam-
ple where the species distribution was driven by elevation 
(x1) and precipitation (x2), with the probability of selecting 
locations proportional to exp (0.5x1–x2). We simulated uni-
formly distributed x and y spatial coordinates for the presence 
and background locations associated with two landscapes 
(a test and a training landscape), allowing the correlation 
among (x,y) spatial coordinates and the habitat predictors 
(x1,x2) to differ between the two landscapes (Table 3, Fig. 6). 
We again fit two models to data collected from the training 
landscape: the first included only elevation and the second 
included elevation and precipitation (the correct model). We 
then evaluated how well these models predicted the spatial 
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Figure 5. Used-habitat calibration (UHC) plots for the second simulation example where the species distribution was driven by temperature 
(x3). The marginal distribution of x3 on the landscape, f a(x3) (red dashed lines), was Normal: f a(x3)  N(0,4). The relative probability of use 
(or presence) was proportional to exp( ).2 3 2

3x x−  The observed distribution of temperature at the presence points in the test data set is given 
by the solid black lines, with a 95% simulation envelope for these distributions given by the gray bands. Predictive distributions were 
formed using one of two models fit to training data, a model with temperature (linear term only; panel A) or temperature and temperature2 
(the correct model; panel B). A model is well-calibrated if the observed distributions (solid black lines) fall within the simulation envelopes.
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distribution of presence points in the test landscape by 
creating UHC plots for the (x, y) spatial coordinates.

The presence locations in the test landscape were largely 
concentrated in the southeast (large x and small y; Fig. 6). 
The correct model accurately predicted the distribution of 
(x,y) spatial coordinates (Fig. 6C, D). By contrast, the model 
containing only elevation resulted in a predicted distribution 
that was relatively uniform in space and for which the x- and 
y-coordinates were not well calibrated (Fig. 6A, B). This exam-
ple illustrates how spatial UHC plots could be used to iden-
tify missing predictors (e.g. the poor calibration in Fig. 6A, 
B might lead an analyst to consider adding precipitation to 
the model because it follows a SE-NW gradient in the test 
landscape). These results also have important implications for 
management. In particular, one should be wary of using the 
elevation-only model to determine areas to conserve given 

the model’s poor transferability. Lastly, we note that one can 
use functions in the ENMeval package (Muscarella et al. 
2014) to construct UHC plots with spatially-stratified cross-
validation in cases where data are available from a single site. 
We illustrate this approach in a vignette associated with the 
‘uhcplots’ package (Fieberg and ArchMiller 2016).

Step-selection functions

An alternative way to motivate the IPP likelihood, Eq. 
(1), can help with conceptualizing generalizations of this 
approach to longitudinal data. With telemetry data, we 
may consider the distribution of resources or environ-
mental conditions at the used (i.e. presence) points, f  u(x), 
as being selected from a distribution of values at available 
(i.e. background) points, f  a(x), with the selection function 
w(xb)  exp(xb) taking us from the distribution of avail-
able locations to the distribution of used locations by way 
of spatial covariates, x, and a set of regression parameters,  
b (Lele and Keim 2006):

f x
x f x

x s f x s ds
u i

a
i

a
( )

( ) ( )
( ( ) ) ( ( ))

=
∫

exp
exp

β
β  (3)

If all areas are equally available, f  a(x(s)) is uniform in space 
(and thus, a constant), getting us back to Eq. (1) (Aarts et al. 
2012). Selection functions have similarly been used to correct 
for biased sampling procedures (Patil and Rao 1978), to study 
natural selection (Manly 1985), and were first introduced in 
the context of foraging and habitat selection by McDonald 

Figure 6. Used-habitat calibration (UHC) plots for spatial coordinates (x,y). The species distribution was driven by elevation (x1) and pre-
cipitation (x2). The marginal distribution of x1 and x2 on the landscape, f a(x1,x2) (red dashed lines), was Normal: f a(x1,x2)  N(0,Σ). The 
relative probability of use (or presence) was proportional to exp(0.5x1–x2). Top panels depict the background distribution of elevation and 
precipitation in the training and test data landscapes, with presence points overlaid in yellow and black triangles. In the bottom panels, the 
observed distribution of elevation and precipitation at the presence points in the test data set is given by the solid black lines, with a 95% 
simulation envelope for these distributions given by the gray bands. Predictive distributions were formed using one of two models fit to 
training data, a model with elevation only (panels A and B) or elevation and precipitation (the correct model; panels C and D). A model is 
well-calibrated if the observed distributions (solid black lines) fall within the simulation envelopes.

Table 3. Correlation among spatial coordinates (x,y) and habitat 
covariates in training and test data in the simulation to evaluate 
areas in space where the model predicts poorly. The marginal distri-
bution of elevation (x1) and precipitation (x2) on the landscape was 
given by a multivariate normal distribution with mean vector  (0,0), 
and var(x1)  var(x2)  4. The true species distribution was propor-
tional to exp(0.5x1–x2).

Correlation

Variables Training data Test data

x1,x2 0.33 0.29
x-coordinate, x1 0.68 0.57
x-coordinate, x2 0.33 –0.29
y-coordinate, x1 0.35 –0.30
y-coordinate, x2 0.67 0.57
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et al. (1990); the theory for estimating selection functions is 
well developed under the label ‘weighted distributions’ (Patil 
and Rao 1977).

Historically, radio-telemetry studies allowed animals to 
be located once to several times per day. Telemetry-based 
SDMs typically assumed these locations could be treated 
as independent, with parameters estimated by compar-
ing these locations to randomly sampled (‘available’) sites 
from within an animal’s estimated home range (Fieberg 
et al. 2010). This approach was often justified by noting 
that animals had sufficient time to reach any area within 
their home ranges between successive locations. The advent 
of Global Positioning System (GPS) data and associated 
hardware and software now allows researchers to assess 
habitat use with much finer temporal resolution. As a con-
sequence, however, telemetry locations collected close in 
time also tend to be close in space, and the only sites avail-
able to an animal shortly after one observation are those 
accessible to the animal from the previous location, within 
the time step.

Step-selection functions were developed to address these 
concerns (Fortin et al. 2005, Forester et al. 2009, Avgar  
et al. 2016). Rather than treat locations as independent 
and assume a uniform distribution for f  a(x), step-selection 
functions treat movements between locations as inde-
pendent. Background locations specific to each telemetry 
location are generated by considering the previous location, 
the time between successive locations, and the movement 
characteristics of the study species – in particular, step lengths 
(distances between consecutive points collected at fixed tem-
poral intervals) and turn angles (change in bearing between 
consecutive locations) (Thurfjell et al. 2014, Avgar et al. 
2016). Background locations are generated by sampling step 
lengths and turn angles from their empirical distributions 
(Fortin et al. 2005) or from appropriate statistical distribu-
tions (e.g. exponential or gamma for step length, von Mises 
for turn angles) (Forester et al. 2009, Avgar et al. 2016). Step 
lengths and turn angles are then combined with the location 
at the previous time point to generate possible movement 
paths, and as a result, distributions of available points that 
are location-specific. To guard against misspecification of the 
step length and turn angle distributions (or, alternatively, 
to estimate parameters in assumed statistical distributions 
describing these movement characteristics), one can include 
as covariates various functions of the distance between points 
and angular deviations from the previous step (Forester et al. 
2009, Avgar et al. 2016).

The likelihood for these data is similar to that for the 
inhomogeneous Poisson process model, except that we now 
have stratified data (one stratum for each observed location 
and its associated available locations generated by the random 
movement paths):

L y x
x

x
i i

i

K
i k

j

n
j k
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where K is the number of strata, ni is the number of locations 
(used plus available) in stratum i, and xj(k) are the covariates 

associated with the jth point in the kth stratum (with xi(k) 
giving the covariates for the used location).

Calibration plots with step-selection functions

It is unclear how traditional presence-background calibration 
plots (Boyce et al. 2002, Johnson et al. 2006, Phillips and 
Elith 2010) might be adapted to step-selection functions. In 
particular, it is not clear how we should account for the strata, 
which contain a fixed number of used locations (usually one). 
By contrast, UHC plots can be adapted to step-selection 
functions with only two minor changes: 1) rather than fit a 
logistic regression model in step [2], we can fit a conditional 
logistic regression model; 2) rather than select a simple ran-
dom sample in step [3c], we can select a stratified random 
sample (i.e. selecting one point from within each stratum). 
No other modifications are necessary.

Here, we illustrate the application of UHC plots to step-
selection functions fit to moose Alces alces telemetry data. From 
2010–2015, technicians captured 170 adult female moose 
in northeastern Minnesota. Technicians fitted moose with 
Iridium GPS radiocollars (VECTRONIC Aerospace, Berlin, 
Germany) recording animal locations at 4.25, 2, and 1.065-h 
fix rates. For a full description of capturing and deployment 
protocols see Carstensen et al. (2014). We selected a single 
animal with data from summer 2013 and summer 2014 and 
subsampled data collected at higher fix rates to achieve a con-
sistent 4.25-h fix rate  0.25 h. We excluded fixes within 24 
h of deployment and those with horizontal dilution of preci-
sion  10 (Rempel and Rodgers 1997). This left a total of 
689 used locations in both 2013 and 2014.

We generated 10 available locations for each used loca-
tion by randomly selecting 10 step lengths and 10 turn angles 
to project the animal forward in time from the previous 
location (see Street et al. 2016 for full description of data 
development). We defined resource availability at used and 
available locations as the proportional cover of four land cover 
types within a 50 m radius buffer (identified in the National 
Land Cover Database 2011; Jin et al. 2013): deciduous for-
est (decid50), mixedwood forest (mixed50), coniferous forest 
(conif50) and treed wetlands (treedwet50).

We fit three conditional logistic regression models to the 
moose data using the ‘clogit’ function in the survival package 
of Program R (R Core Team, Therneau 2015), treating loca-
tions from 2013 as training data and locations from 2014 as 
test data. In the first model, we included decid50, mixed50, 
conif50, and treedwet50 as explanatory variables. In the sec-
ond model, we included the same set of predictors, except 
we dropped mixed50. Lastly, we fit a model containing only 
mixed50. We also included step length (divided by 1000 to 
scale the magnitude of the regression coefficient to that of the 
land cover classes) in each of the models to accommodate bias 
introduced by using parametric distributions for generating 
step-lengths (Forester et al. 2009, Avgar et al. 2016).

In the original step-selection model, the coefficient for 
conif50 was negative, whereas the coefficients for decid50, 
mixed50, and treedwet50 were all positive; of these, only the 
coefficient for mixed50 was statistically significant (Table 4). 



749

When we dropped mixed50 from the model, the coefficients 
in the step-selection function changed drastically; the coef-
ficients for decid50 and treedwet50 even changed sign (Table 
4). The coefficients for all of the compositional predictors 
left in the model were negative (and all statistically signifi-
cant), which likely reflects the fact that having more of any 
one of these habitat types within 50 m meant having less of 
mixed50. This series of models nicely illustrates some of the 
challenges involved with modeling compositional data due to 
multicollinearity among the predictors (Graham 2003, Cade 
2015).

To produce UHC plots for these models, we again sim-
ulated 1000 used test data sets, drawing new regression 
parameters each time from N ( , )β β� � �cov ( ) . The UHC plots 
were similar for all three models, with the distribution of the 
covariates at the used points in the test data set largely falling 
within the predicted distributions for each of the explanatory 
variables (Fig. 7). These plots suggest that the models are 
well-calibrated, but also that the information about selection 
can be captured by a single compositional predictor, mixed50 
(Fig. 7I–L).

Discussion

The combination and popularity of open source software 
(Ghisla et al. 2012, R Core Team), remote sensing technolo-
gies, and a plethora of modeling approaches has facilitated 
the application of models linking plant and animal locations 
to environmental variables. Further, geographic informa-
tion systems (GIS) make it easy to produce maps depict-
ing predicted distributions for sampled and unsampled 
areas. But, how good are these models and the maps they 
produce? Should we trust models to predict distributions in 
novel environments, particularly when they are constructed 
by considering a large suite of often multicollinear predic-
tors (Dormann et al. 2013)? These questions are of utmost 

importance to wildlife managers and conservation biologists, 
and thus it is not surprising that they have garnered signifi-
cant attention lately from ecologists working across a wide 
range of taxa (Vanreusel et al. 2007, Moreno-Amat et al. 
2015, Torres et al. 2015, Duque-Lazo et al. 2016, Huang 
and Frimpong 2016).

Most popular approaches to fitting species distribution or 
habitat selection models rely on comparing observed loca-
tions of individuals to randomly or systematically selected 
locations that describe the background distribution or avail-
ability of resources or environmental conditions. Frequently, 
the combined presence-background data are modeled using 
binary regression models, with Yi  1 for observed locations 
and 0 for background locations (Johnson et al. 2006, Fithian 
and Hastie 2013). This treatment of the data originally led to 
much concern and confusion among practitioners who rec-
ognized that background points (with Yi  0) might actually 
be used by the species (Keating and Cherry 2004). Recent 
connections between common modeling approaches (e.g. 
MaxEnt, spatial logistic regression) and inhomogeneous Pois-
son process models have clarified both the role of the back-
ground points (they serve as quadrature points in Eq. (1); 
Warton and Shepherd 2010) and also the interpretation of 
regression parameters (they describe systematic variation in 
the log intensity of the Poisson process model; Aarts et al. 
2012, Fithian and Hastie 2013, Renner et al. 2015).

As more researchers become aware of these connections, 
we expect to see a similar paradigm shift in terms of the 
methods proposed for validating species distribution and 
habitat selection models. Traditionally, methods for validat-
ing species distribution models have mimicked or modi-
fied approaches developed for presence–absence data. They 
have treated the number of presence locations as random, 
and have focused on how well the models do at predict-
ing whether locations are ‘used’ or ‘available’. By contrast, 
UHC plots consider the number of presence locations as 
fixed, and instead focus on validating a model’s ability to 
predict the characteristics (i.e. the biotic and abiotic factors 
used to model distribution patterns) at these locations using 
out-of-sample data. Our simulation examples demonstrated 
the utility of UHC plots for identifying missing covariates 
and nonlinearities that should be included in the model as 
well as how these plots can be used to identify areas in space 
that are poorly predicted. Our empirical example, based on 
moose movement data, demonstrated how this approach can 
accommodate the stratified nature of step-selection func-
tions and, further, how UHC plots can be used to provide 
insights into the effect of multicollinearity, particularly when 
considering compositional data. Future work should focus 
on exploring the use of UHC plots to suggest possible trans-
formations (e.g. log, step functions) or to detect other forms 
of model misspecification (e.g. the need for interactions). 
Simulated data are critical to these efforts since they allow 
one to evaluate model performance in scenarios where the 
factors driving the underlying species distribution are known 
(Miller 2014, Leroy et al. 2016).

Table 4. Parameter estimates (SE) from step-selection functions fit to 
moose Alces alces data in Minnesota using conditional logistic 
regression. Covariates measured the proportional cover of 4 land 
cover types within a 50 m radius buffer: deciduous forest (decid50), 
mixedwood forest (mixed50), coniferous forest (conif50), and treed 
wetlands (treedwet50). We also included step length (divided by 
1000 to scale the magnitude of the regression coefficient to that of 
the land cover classes; step) to accommodate bias introduced by 
using parametric distributions for generating step-lengths.

Model

Variable (1) (2) (3)

decid50 0.49 –0.60
(0.33) (0.19)

mixed50 1.38 1.03
(0.24) (0.16)

conif50 –0.30 –1.37
(0.38) (0.27)

treedwet50 0.40 –0.70
(0.31) (0.16)

step –6.33 –6.44 –6.39
(0.25) (0.25) (0.25)
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Recently developed approaches for assessing fit of spa-
tial point process models offer another promising alterna-
tive to UHC plots considered here (Baddeley et al. 2005, 
2013, Renner et al. 2015). Specifically, one can plot residuals 
against spatial covariates or smoothed residuals versus spa-
tial location (e.g. easting, northing). These types of plots are 
available in the ‘spatstat’ library of Program R and have a 
strong theoretical basis (Baddeley et al. 2008). The advan-
tage of the approach we suggest is that it can be applied 
more generally, as we have demonstrated with fitted logistic 
regression models and step-selection functions. The ability 
to construct simulation envelopes for out-of-sample data is 

another advantage, especially since most applications of spe-
cies distribution models consider a large suite of explanatory 
variables and often allow for considerable model complexity, 
leading to data-driven models that may be overfit and per-
form poorly when applied to new data (Giudice et al. 2012, 
Harrell 2013).

Understanding what motivates animals to move from 
one location to another, and how the broad-scale patterns 
of resources and risk affect the distribution of a species in 
the landscape is of critical importance to the management 
and conservation of wildlife and plant species. For mod-
els of species distributions to be useful, they must be more 
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Figure 7. Used-habitat calibration plots for step-selection models fit to moose Alces alces data in Minnesota. We considered three different 
models (represented by the three rows of panels), each containing a different subset of covariates (as indicated above each row of panels). 
Covariates in the models measured proportional coverage of deciduous forest (decid50), mixedwood forest (mixed50), conifer forest 
(conif50), and treed wetland (treedwet50) within a 50 m buffer of each location. We also included step length (divided by 1000 to scale the 
magnitude of the regression coefficient to that of the land cover classes; step) to accommodate bias introduced by using parametric distribu-
tions for generating step-lengths. Panels depict the distribution of available and used locations in the test data set (red dashed and solid black 
lines, respectively), along with 95% simulation envelopes for the predicted distribution of these habitat covariates at the used locations from 
the fitted step-selection functions. A model is well-calibrated if the observed distributions (solid black lines) fall within the simulation 
envelopes.
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than shots in the dark. They must be able to make predic-
tions about how a species will respond to new environmental 
conditions presented at different locations in space and time 
in the face of anthropogenic landscape change. By compar-
ing model predictions to out-of-sample data, UHC plots can 
identify important features that are well-predicted and others 
where improvement is needed. This process can shed light 
on how best to modify models, provide important insights 
into factors driving the distribution of species, and ultimately 
enhance the reliability and generality of conservation and 
management recommendations.
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