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Species distribution models 
throughout the invasion history of 
Palmer amaranth predict regions 
at risk of future invasion and reveal 
challenges with modeling rapidly 
shifting geographic ranges
Ryan D. Briscoe Runquist   , Thomas Lake, Peter Tiffin & David A. Moeller

Palmer amaranth (Amaranthus palmeri) is an annual plant native to the desert Southwest of the 
United States and Mexico and has become invasive and caused large economic losses across much 
of the United States. In order to examine the temporal and spatial dynamics of past invasion, and 
to predict future invasion, we developed a broad array of species distribution models (SDMs). In 
particular, we constructed sequential SDMs throughout the invasion history and asked how well those 
predicted future invasion (1970 to present). We showed that invasion occurred from a restricted set 
of environments in the native range to a diverse set in the invaded range. Spatial autocorrelation 
analyses indicated that rapid range expansion was facilitated by stochastic, long-distance dispersal 
events. Regardless of SDM approach, all SDMs built using datasets from early in the invasion (1970–
2010) performed poorly and failed to predict most of the current invaded range. Together, these 
results suggest that climate is unlikely to have influenced early stages of range expansion. SDMs 
that incorporated data from the most recent sampling (2011–2017) performed considerably better, 
predicted high suitability in regions that have recently become invaded, and identified mean annual 
temperature as a key factor limiting northward range expansion. Under future climates, models 
predicted both further northward range expansion and significantly increased suitability across large 
portions of the U.S. Overall, our results indicate significant challenges for SDMs of invasive species far 
from climate equilibrium. However, our models based on recent data make more robust predictions for 
northward range expansion of A. palmeri with climate change.

Invasive species are marked by rapid range expansion and dramatic population growth that negatively affects 
communities and ecosystems outside of their historical range1. Because invasive species often cause considerable 
economic losses, land managers and conservation scientists are in need of tools to forecast invasion risk so that 
they can direct resources for prevention strategies and targeted surveillance operations2–6. Species distribution 
models (SDM) use species occurrence records and environmental data to build correlative models of habitat suit-
ability and identify key environmental variables limiting range expansion7–10. For invasive species, SDMs can be 
a useful tool for identifying potential habitat requirements and environmental limitations of future range expan-
sion6,9,11,12. Further, the models provide testable hypotheses that can be evaluated with field experiments and 
long-term observation of population dynamics. However, because invasive species often violate key assumptions 
of SDMs, we do not fully understand the extent to which they are reliable for predicting potential invasive species’ 
range expansion9,13. In this study, we leveraged detailed historical records for the rapid invasion of Palmer ama-
ranth (Amaranthus palmeri) to assess if and how SDMs predict the explosive range expansion during the invasion 
process. Because A. palmeri is among the most problematic emerging threats to natural (e.g. prairies, grasslands) 
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and agricultural ecosystems in the United States, accurate SDMs may be particularly valuable for preventing and 
mitigating future invasion.

Developing SDMs for invasive species can be considerably more challenging than for native species. SDMs 
operate under the assumption that a species is at equilibrium with the environment and that there are not large 
areas that are suitable but unoccupied; however, invasive species are, by definition, not at equilibrium9. SDM 
methods have been adapted to ameliorate some of the inherent problems of invasive species modelling but these 
methods can have differing effects on invasion projections and interpretation. For example, because environments 
(and correlations among environmental variables) may differ outside of the range compared to inside, modelers 
may retain more environmental variables to capture this variation9,14. In addition, it is unclear whether models 
built using invaders’ native ranges improve or hinder predictions of future range expansion6,15–17. Developing 
SDMs for invasive species can be especially problematic in cases where adaptation and/or admixture influence 
niche breadth over the course of invasion history17–19. In these cases, the genetic composition of populations, and 
thus the environmental factors that determine reproductive success, may differ between the native and invaded 
ranges. As a result, both ecological (dispersal limitation) and evolutionary factors (gene flow, adaptation) violate 
key assumptions of SDMs.

Although invaders often arrive from other continents1,20, they can also emerge within a single continent and 
exhibit rapid range expansion21–24. Similar to trans-continental invaders, within-continent invaders often exhibit 
explosive demographic expansions and can cause similarly disruptive ecosystem effects22–24. At the same time, 
these invaders may possess a unique subset of characteristics (e.g. association with anthropogenic change) and 
management challenges that are vital to document and model in order to develop effective management strat-
egies1,23,24. Modelling within-continent invaders offers the opportunity to study how SDMs perform when an 
invasion occurs directly from a native range to adjacent ecosystems and across continuous environmental gradi-
ents. Investigations of native invasion can more readily distinguish among the alternative causes of sudden range 
expansion including climate, biotic interactions (e.g. competitive environment), or dispersal limitation22–24.

Amaranthus palmeri is an annual, dioecious plant with a relatively narrow native range that includes the desert 
Southwest of the United States (especially Arizona and New Mexico) and northwest Mexico (Sonora)25. Beginning 
in the mid 20th century, its range rapidly expanded north and east with populations now found throughout most 
of the continental United States, except for New England, the Rocky Mountain region, and Pacific Northwest25–27. 
In the last two decades, A. palmeri has become one of the most economically-damaging weeds in the United 
States28,29. Invasion has occurred most commonly into restorations of natural habitat (i.e. conservation plantings) 
and agricultural fields via contaminated seed sources and agricultural equipment, respectively28,30. Crop yields in 
fields infested with A. palmeri may be reduced by more than half31,32 and yield losses have the potential to reach 
as high as four billion dollars annually in the mid-South alone33. Despite the enormous economic impact and 
continued range expansion, the environmental controls of its distribution and predictions for its future spread 
remain poorly resolved.

In this study, we examined the range expansion dynamics of A. palmeri from its historical to current range and 
used SDMs to predict the distribution of suitable habitat across North America throughout the invasion process 
and under future climates. To determine whether SDMs would have been successful if implemented at early 
versus late stages of the invasion, we took advantage of the detailed record of invasion and abundant occurrence 
dataset to construct SDMs at five time points in the invasion process. Because rapidly-expanding invasive species 
can be challenging to model, we used a broad array of modeling approaches (native + invaded range vs. invaded 
range only, Maxent vs. boosted regression trees, alternative climate datasets, downsampling overreported areas, 
etc.) to determine their consequences for model accuracy and discrimination ability under both current and 
future climates. We also determined which environmental factors most influenced projected habitat suitability 
and potentially limit range expansion into unoccupied regions. Finally, we examined the contribution of stochas-
tic long-distance dispersal to range expansion using spatial autocorrelation analyses.

Results
Niche breadth and overlap between the native versus invaded ranges.  We characterized the cli-
mate niche breadth of A. palmeri and quantified the extent to which the climate niche has shifted and/or expanded 
in the invaded range. We used an approach that first involves principal components analysis (Fig. S1) and then 
accounts for the frequency of occurrence records in environmental space and the frequency of environments34.

The invaded range represented both a niche shift (change in centroid) and niche expansion (increase in extent) 
based on principal components of both CliMond (Fig. 1) and PRISM climate data (Fig. S2). This niche shift and 
expansion was also apparent along individual environmental variable axes (Fig. S3). Further, niche shift and 
expansion were evident from niche similarly tests34, which indicated that in the invaded range, the environments 
in which A. palmeri occurs are not more similar to the native range environments than random; although for 
CliMond the result was near significance (p = 0.064 and p = 0.196; CliMond and PRISM respectively). Despite a 
niche shift, there remains considerable overlap between the native and invaded range niches (D = 0.32 and 0.28 
for CliMond and PRISM respectively; Figs 1, S2, S3).

SDMs generated from all occurrences in the native and invaded range.  To generate SDMs, we 
obtained records from publicly available sources (GBIF and EDDMaps) and land manager records (see Methods 
for details) and filtered records to remove duplicates or errors. Within the filtered dataset, occurrence points 
were unevenly distributed because of variation in natural occurrences and sampling biases. We downsampled 
the dataset to a 50 km grid to minimize the disparity in sampling density among geographic areas (hereafter: 
native + invaded dataset). We explored SDMs built using Maxent and Boosted Regression Trees (BRT: see the 
electronic supplementary materials for BRT results).
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Species distribution models (SDMs) built with the native + invaded dataset indicated that a large portion of 
the conterminous United States and northern Mexico have high predicted probabilities of occurrence. For both 
the CliMond (projections in blue/green color palette) and the PRISM (projections shown in pink/purple color 
palette) models, areas of highest probability of occurrence included large portions of the desert Southwest, the 
Central Valley of California, most of the Midwest, the Southeast, the Mid-Atlantic, and southern New England 
(Fig. 2A,C). Areas predicted to have low probability of occurrence included mountainous regions and the highest 
northern latitudes of the United States (Fig. 2A,C). The SDMs based on PRISM data, which are centered on 1995 
(compared to CliMond data, which is centered on 1975), showed higher predicted probabilities of occurrence at 
higher latitudes, with urban areas in the northern parts of the range having slightly higher probabilities of occur-
rence than surrounding rural areas (Fig. 2C).

Both CliMond and PRISM models had high predicted probabilities in a number of areas that are currently 
either unoccupied (e.g. the Palouse) or potentially unreported (e.g. Alabama, the Mid-Atlantic region, Ohio). 
Many of these areas report the presence of the species in the state but do not provide georeferenced occurrences 
and thus were not used to train our models (e.g. Maryland, Pennsylvania, New York; Fig. 2A,C). By contrast, 
the models predicted that recently colonized areas at the northern range margin (e.g. Minnesota, Wisconsin, 
Michigan) had marginal habitat suitability.

Both CliMond and PRISM models had low discrimination (AUC scores: 0.56–0.62), but moderately high 
model accuracy (TSS scores: 0.69–0.70; Table S1). Models performed similarly or marginally better in the native 
range than invaded range by most metrics (CliMond: Native-AUC: 0.67 v. Invaded-AUC: 0.61, Native-TSS: 0.53 v. 
Invaded-TSS: 0.49; PRISM: Native-AUC: 0.63 v. Invaded-AUC: 0.63, Native-TSS: 0.23 v. Invaded-TSS: 0.51).

For CliMond models, average annual temperature and radiation seasonality had the greatest variable contri-
butions, 47.4% and 24.4% respectively (Table 1). For PRISM models, average minimum and maximum temper-
atures had the greatest variable contributions, 34% and 33% respectively (Table 1). The probability of occurrence 
along the northern range margin and in the Mountain West was most limited by low temperature (mean annual 
temperature for CliMond and low mean minimum temperature for PRISM; Fig. 3A,C). The probability of occur-
rence in the Southeast was most limited by high precipitation (CliMond and PRISM) and high vapor pressure 
(PRISM).

Including land cover in the models modestly increased model performance as measured by AUC (0.63–0.66) 
but not TSS (0.60–0.61; Table S1) and increased the predicted probability of occurrence in urban centers, particu-
larly in northern regions (Electronic supplementary material, Fig. S4). Land cover also had a high relative variable 
contribution (60% for CliMond models, 57% for PRISM models; Table 1).

Figure 1.  Niche breadth and shift of native versus invaded niche. Axes are principal components of CliMond 
variables included in the model. The total extent of the background environment in the native region is outlined 
in grey (solid = total niche space; dashed = 90% of extent). The total extent of the background environment in the 
invaded region is outlined in dark green (solid = total niche space; dashed = 90% of extent). The environmental 
space unique to the native niche is shown in gray (9.1% weighted loss of the original niche), the area of 
environmental space shared between the native and invaded niche is shown in olive-green (87% of the total 
weighted invaded niche), and the region of environmental space newly occupied by the invaded niche is shown 
in green (i.e. niche expansion; 13% if the total weighted invaded niche). The arrows represent the shift in the 
weighted centroid of occurrences from native to invaded niche (dark solid arrow), and the shift in the center of 
environmental space (lighter dashed arrow). The weighted niche overlap, calculated using Schoener’s D, was 0.32.
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SDMs generated only from occurrences in the invaded range.  It is not clear if SDMs of invasive 
species perform better when generated from the entire range or the invaded range6,15,16,19, therefore we also built 
SDMs with occurrence records from only the invaded range. Similar to models built with native + invaded occur-
rences, these models predicted high suitability in most of the invaded range (i.e. central and southeastern United 

Figure 2.  SDM model projections of Amaranthus palmeri generated using CliMond and PRISM variables for 
the native + invaded dataset and invasive only dataset. All projections are means of 25 model runs. Panels A 
and B were generated using CliMond environmental variables (blue/green color palette) and panels C and D 
were generated using PRISM variables (pink/purple color palette). Panels A and C used the native + invaded 
dataset for model building and panels B and D used the invasive only dataset. In panels A and B the occurrences 
included in the model are shown in red and in panels C and D the occurrences included in the model are shown 
in yellow. All other occurrences are in gray. The complementary log-log predicted probability for each raster cell 
is indicated by the color corresponding the bars to the right of the panels.

Variable Bioclim #

Native + invaded Dataset Invaded Dataset

Climate Only
Climate + Land 
Cover Climate Only

Mean SE Mean SE Mean SE

CliMond Environmental Variables

Mean annual temperature Bio 1 47.38 2.95 18.97 1.79 40.19 2.62

Mean diurnal temperature range Bio 2 3.45 0.6 0.92 0.22 8.98 1.24

Annual precipitation Bio 12 3.52 0.66 2.14 0.43 19.92 3.23

Precipitation seasonality Bio 15 4.16 0.75 3.00 0.37 2.19 0.48

Radiation seasonality Bio 23 24.46 2.17 7.91 0.97 11.11 2.00

Annual mean moisture index Bio28 10.32 1.49 5.74 0.81 5.56 1.14

Moisture index seasonality Bio31 6.71 1.36 1.72 0.4 12.04 1.62

Land Cover — — — 59.6 1.54 — —

PRISM Environmental Variables

Maximum temperature — 33.37 4.05 16.17 1.89 14.34 3.49

Minimum temperature — 34.72 3.95 15.31 2.16 36.25 4.83

Precipitation — 6.93 1.10 2.66 0.44 10.89 1.87

Maximum vapor pressure deficiency — 6.00 1.35 3.45 0.83 2.99 0.85

Minimum vapor pressure deficiency — 13.5 1.58 4.60 0.84 11.13 1.71

Dew Point — 5.48 1.36 1.13 0.64 24.4 4.77

Land Cover — — — 56.69 1.48 — —

Table 1.  Mean and standard errors of relative contributions of environmental variables included in Maxent 
models. Models were built using climate variables from CliMond or PRISM. Models were built with occurrences 
from either the native + invaded dataset or the invaded dataset. For the native + invaded dataset, models 
included either climate variables only or climate variables plus land cover. All metrics are based on the averages 
of 25 model runs (see methods).
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States); however, they performed comparatively worse in predicting occurrences in the native range (Fig. 2B,D). 
By contrast, the invaded range models were more successful in predicting occurrences at the northern range 
margin (Fig. 2B,D).

Similar to models based on data from the native + invaded range, models based on only the invaded range 
(both CliMond and PRISM) had low discrimination ability (AUC: 0.60–0.64; Table S1) and moderate accuracy 
(TSS: 0.64–0.68; Table S1). The most important environmental variables were mean annual temperature (40%) 
and mean annual precipitation (20%) for CliMond, and mean minimum temperature (36%) and dew point 
(24%) for PRISM (Table 1). The highest contributing variables for both climate datasets were the same as for the 
native + invaded model.

As with the native + invaded range model, low temperature was limiting for habitat suitability at the northern 
range margin. However, the invaded range models also indicated that a broad temperature range limited suitabil-
ity at the northern range limit (Fig. 3B,D).

Range expansion dynamics.  The number of occurrence records and geographic range increased dramat-
ically after 1950 (95% of records since 1950), when A. palmeri was first reported to spread outside of its native 
range and >50% of records are from the last 10 years (Fig. 4I).

An increasing pace of invasion was also evident in the change in area of occupancy through time (area of occu-
pied grid cells; Fig. 4J). The relationship was linear until approximately 2000–2010 (linear AICc: 76.1; log-linear 
AICc: 76.7); however, since 2010, an accelerating (log-linear) relationship provided a better fit (linear AICc: 97.2; 
log-linear AICc: 89.8).

Models built using data from 2010 and before did not forecast the extent of the current invaded range 
(Fig. 4A–H; model evaluations in Table S2). In the modelled range, sequential historical models had low overall 
discrimination (AUC: 0.58–0.63) and moderate accuracy (TSS: 0.62–0.74). Additionally, historical models were 
not able to predict future occurrences better than random, even when evaluations were limited to regions with 
only analogous climates (AUC: 0.53–0.55, TSS: −0.12–0.16). When projecting habitat suitability across North 
America, the proportion of suitable habitat only increased modestly from ~20% (1970) to 25–30% (1980 to 2010), 
then abruptly increased to ~50% in 2017 (Fig. 4K).

Occurrences in the native range were spatially autocorrelated at all three spatial scales assessed (1 and 10 
nearest neighbors, all neighbors within 10 km: Join-count pseudo P < 0.0001). By contrast, in the invaded range, 
occurrences were spatially autocorrelated only at the larger spatial scales (P < 0.0001 for both 10 nearest neigh-
bors and all neighbors within 10 km, P = 0.74 for single nearest neighbor). The weaker autocorrelation at the 
finest spatial scale suggests that stochastic long-distance dispersal events likely contributed to the invasion process 
rather than wave-like spread from nearest neighbors, alone.

Projected future distributions.  Under all future climates, using the native + invaded range models, the 
area of high habitat suitability expanded and models projected greater habitat suitability in the Upper Midwest 
(MI, WI, MN, ND, SD), Pennsylvania and New York. Projections of the invaded range models predicted a similar 
northern expansion of suitable habitat, albeit accelerated and more extensive. For example, regions of high suit-
ability are evident in central Minnesota and North Dakota by 2030, and by 2070 the majority of both states are 
deemed highly suitable (Figs 5A–D, S5–S7).

Figure 3.  Limiting environmental factors on predicted probability for A. palmeri. The map depicts which 
environmental factor in the Maxent models contributes most negatively to the predicted probability of 
occurrence in each raster cell. The panels mirror the maps in the previous figure. Panels A and B are CliMond 
variables, panels C and D are PRISM variables, panels A and C are for models built with the native + invaded 
dataset and panels B and D are for models built with the invasive only dataset. Maps show are representative of 
the limiting factors by geographic region for the 25 models in the results.
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Discussion
Species distribution models based on current records of occurrence accurately predicted A. palmeri’s invaded 
range and indicated that temperature plays a particularly important role in limiting habitat suitability at the 
northern range margin. SDMs performed better when we used occurrences only from the invaded range, rather 
than including the native range as well. Under future climate scenarios, our models predicted northward range 
expansion and increased suitability in regions that are already occupied but of moderate suitability (e.g. upper 
Midwest). Unfortunately, SDMs performed quite poorly when we attempted to predict the current invaded range 
from earlier phases of the invasion history (e.g. occurrences until 1970, 1980, 1990, 2000, 2010). Analyses of 
invasion dynamics suggest that stochastic movements across the landscape have contributed importantly to rapid 
range expansion, rather than a wave-like spread, alone. Our models make robust predictions about incremental 
expansion in the future but suggest caution when employing SDMs to predict the potential geographic range of 
invasive species that are far from equilibrium with the environment.

We used a diverse set of modelling approaches and all of them had modest discrimination ability. This was 
evident by low AUC scores (but TSS indicated moderate to high accuracy), weak signal in individual environ-
mental variables, and predictions of low habitat suitability in currently occupied regions at the range margin. 
Discrimination ability and predictions of habitat suitability were consistent across all versions of our models, 
suggesting that the modelling approach was not the likely cause. Instead, the climate datasets along with the biol-
ogy and invasion history of A. palmeri, may have contributed to limited SDM discrimination. First, the climate 
datasets used (CliMond and PRISM) are constructed based on mean data over a 30-year timeframe (CliMond: 
1961–1990; PRISM: 1970–2010). Therefore, it is possible that our models are conservative with respect to predic-
tions of habitat suitability, and occurrences along the range margin, particularly in the north, may reflect recent 
warmer than average years. Second, it is possible that climate has not been the main driver of distributional limits 
but rather that they have been caused by other factors (e.g. dispersal or biotic interactions). For example, range 
expansion may have been limited by the availability of disturbed, low-competition habitats35,36 that have become 
more common in the past 70+ years with industrialized agriculture37. Third, annual plants such as A. palmeri can 
often exploit a broad range of climates by exploiting only the fraction of the year that is suitable via altered timing 
of germination and reproduction (i.e. niche construction38). Last, populations may have adapted to novel envi-
ronments during range expansion, which has resulted in a broad set of suitable climates across the species’ range 
and a weakened signal of individual environmental variables in SDM construction. Together, these historical and 
biological factors may contribute to modest model discrimination/accuracy but also provide important insight 
for future work on the causes of distributional limits. We consider each of these issues in detail below.

Figure 4.  Sequential historical models and time series analyses of A. palmeri. Panels depict models built with 
occurrence records that include data up to a given year (1970, 1990, 2010). Projections on the top row (panels 
A–D) were built with CliMond environmental variables and those on the second row (panels E–H) were built 
with PRISM environmental variables. Occurrence records used to build models are in red (A–D; CliMond) 
or yellow (E–H; PRISM) all other occurrences are in gray. The complementary log-log predicted probability 
for each raster cell is indicated by the color corresponding the bars to the right of the panels. Metrics of range 
expansion are on the bottom row. The panel I depicts the accumulation of records through time. The panel J 
depicts the change in Area of Occupancy (measured in number of 30 arcsecond grid cells) over time. Lastly, the 
panel K depicts the average predicted probability over all grid cells for models built at each time period.
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Amaranthus palmeri remained within the bounds of its native range until the middle of the twentieth century 
but quickly began to spread by the 1970s and 1980s28. We took advantage of the detailed time series of occurrence 
data to ask how SDMs performed at sequential stages of the invasion process. Models built with occurrence 
records until 1970, which were primarily from the native range and early invasion, predicted very little of the 
extent of the eventual invaded range. Models built using occurrence records until 1980, 1990, and 2000 also per-
formed poorly in forecasting the eventual invaded range. Qualitative inspection of projections indicate that mod-
els were successful in predicting the invasion of geographic regions immediately adjacent to the occupied range 
(i.e. short periods into the future) but failed to predict over broader geographic areas (and longer time scales). 
These results imply that climate was not an important factor in the early stages of the invasion and that dispersal 
limitation contributed to limits on range expansion. Our models that incorporated land cover made similar pre-
dictions about the extent of invasion, but also emphasized that human disturbance was likely an important factor 
in range expansion. Similarly, a meta-analysis by Simberloff et al.24 found that most invasions of native plants 
are not limited by climatic variables and instead are associated with anthropogenic change, such as alteration of 
grazing and fire regimes. The association of A. palmeri with natural and human-caused disturbed habitats may in 
part explain the original restriction and current movement of the species.

Our results also suggested that stochastic long-distance dispersal contributed to rapid range expansion 
throughout the invasion process. The total area of occupancy for A. palmeri in North America increased line-
arly during most of the invasion history but began to accelerate rapidly approximately in the last decade (2010–
2017). We also found that occurrences in the invaded range were not spatially-autocorrelated at fine spatial scales 
(nearest neighbors) indicating that stochastic movement (e.g. long-distance dispersal events) has likely been 
important. This result is consistent with observations from other systems, and theoretical models, which have 
suggested that rapidly expanding ranges often spread via short-distance dispersal at range margins coupled with 
rare long-distance stochastic dispersal39,40. Such rapid and stochastic invasion is most likely to occur when an 
invader is far from equilibrium with the environment (e.g. climate), with large amounts of suitable but unoccu-
pied territory.

Although we detected a recent acceleration in invasion speed and stochastic spread, our models suggest that 
A. palmeri is closer to reaching the boundaries of its potential range. Models built with the most recent data-
sets (2017) best predicted large geographic areas that have recently been invaded but do not have occurrences 
included in model building (e.g. Maryland, Pennsylvania, New York, and portions of the Southeast and Upper 
Midwest; USDA Plant Database; https://plants.usda.gov); whereas, models built with older datasets underpre-
dicted areas at risk for future invasion. Similar to our results, Václavík and Meentemeyer41 found that early in the 
invasion history of Phytophthora ramorum, models underpredicted areas at risk for future invasions, but that late 
in the invasion more models readily predicted unoccupied areas that were later invaded. Therefore, our models 
based on current datasets may likely make more robust predictions about future invasion than those based on 
data from earlier in the invasion process.

Figure 5.  Model projection of A. palmeri under future climate change scenarios. The projections are for the 
MIROC-H Global Circulation Model under the A1B emissions scenario. Panels A and B are based on projected 
environmental variables in the year 2030 and panels C and D for year 2070. The panels A and C are projections 
based on models built with the native + invaded dataset and panels B and D are based on models built with the 
invasive only dataset. The complementary log-log predicted probability for each raster cell is indicated by the 
color corresponding the bars to the right of the panels.
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One of the difficult decisions faced by modellers of invasive species is whether and how to use occurrence 
information from the native range in modelling and projecting invasive ranges6. In many cases, using native 
plus invasive records overpredicts habitat suitability in unoccupied areas12; whereas, using only the invaded 
range better predicts potentially suitable unoccupied areas. In our models, we found that using occurrences 
from the native + invaded range underpredicted some areas that have already been invaded (i.e. the Midwest, 
Southeast, and Mid-Atlantic; Figs 2A,C, S8). These newly-invaded regions had higher predicted habitat suitabil-
ity when models were built using data from only the invaded range. Therefore, like many other invasive species, 
newly-invaded areas are best predicted by models built only with invaded occurrences6,19. This is likely because 
the native range is a narrow subset of climates compared to the invaded range. Indeed, our niche analyses showed 
that the native and invaded ranges occupied different, but overlapping, climatic niche space, which is common 
for many invasive species19,42. This niche shift makes it potentially problematic to model invaded regions using 
native-only models or models where a high density of native occurrences might heavily bias the SDM.

Range expansion may have been facilitated by adaptation and/or admixture. Amaranthus palmeri may have 
adapted to novel environments (e.g. temperature and precipitation regimes) during northern and eastern range 
expansion and thus differentiated from native genotypes. Thus far, there is evidence that resistance to glypho-
sate application quickly evolved43, which has greatly enabled its spread into agricultural fields28. Because SDMs 
assume that all populations have the same climate niche, local adaptation across the range violates this assump-
tion and may produce biologically unrealistic predictions7–9. This may make it more important to build detailed, 
regionally-informed models to capture patterns of relevant environments and genotypes. In addition to adap-
tation from standing genetic variation, admixture from closely-related species could also contribute to range 
expansion and confuse SDMs. Admixture has been documented with A. tuberculatus44,45, a widespread species 
in the central United States (ranging from Canada to Mexico) but it’s importance for adaptation to northern and 
eastern environments remains unclear. Nevertheless, it is possible that A. tuberculatus has served as an important 
source of adaptive genetic variation during range expansion. Given the potential for evolution to influence inva-
sion dynamics in this system, it would be particularly profitable to build SDMs that incorporate information on 
functional traits and adaptive differentiation46,47.

Methods
Study system.  Amaranthus palmeri is a dioecious, wind-pollinated, obligate outcrossing, annual plant that 
harbors substantial genetic diversity within and among populations26,28,31,45. In its native range, A. palmeri occurs 
in dry, itinerant stream and riverbeds and other habitats subject to frequent disturbance25,26,28. A. palmeri has 
high photosynthetic rates, grows rapidly, and can quickly deplete soils of nutrients48–50. Its seeds can germinate 
throughout the growing season and plants can successfully reproduce at almost any size or age26,28. This combina-
tion of traits has predisposed the species for success in agricultural fields and other disturbed areas26. There is also 
evidence for widespread herbicide resistance (e.g. glyphosate) and other adaptations to weed control, including 
delayed germination and rapid development28.

Species occurrence records.  Data sources.  We gathered 3,967 occurrence records, ranging in dates from 
1896–2017, from open-access databases and herbarium networks including: Global Biodiversity Information 
Facility (GBIF; www.gbif.org; Appendix A), Early Detection Distribution Mapping System (EDDMapS; www.
eddmaps.org; Appendix A), and the Southwest Environmental Information Network (SEINET; swbiodiversity.
org/seinet; Appendix A). We also incorporated 434 county-level occurrence records (approximately the same 
geographic precision as the minimum for the primary environmental dataset; see below) for several Midwestern 
and Southeastern states (AK, IA, IL, IN, MI, MO, MN, MS, NE, OH, SD, TN; Appendix A) where few detailed 
records were available. These data were provided directly by state land managers; exact localities were not pro-
vided to protect landowner identity. For these county-level data we used the geometric centroid of each county 
as the location of occurrence.

Environmental data.  To generate SDMs and quantify niche dynamics, we used climate data extracted from 
CliMond (www.climond.org)51 and PRISM (prism.oregonstate.edu). From CliMond, which is based primarily 
on climatological data from 1961–1990, we extracted data for all 35 bioclimatic variables at 10 arc-minute reso-
lution (the finest scale available for all GCMs used). From these 35 variables, we identified seven predictor varia-
bles: mean annual temperature, mean diurnal temperature range, annual precipitation, precipitation seasonality, 
radiation seasonality, mean annual moisture index, and moisture index seasonality. We selected these variables 
because they were not strongly correlated (Pearson r < 0.8) and described the major axes of climatic variation 
along the first two axes of a PCA of the current range. We also extracted seven climate variables, including one 
composite variable, from PRISM, which is based on data collected from 1981 to 2010 at 30 arc-second resolu-
tion. For PRISM, we retained all variables except mean annual temperature, which was highly correlated with 
minimum and maximum temperature. We retained more variables than is typical for many SDMs to provide 
more robust predictions of habitat suitability in unoccupied regions and under future climate projections14. For 
a subset of SDMs, we included the land cover layer as an additional categorical variable. We obtained data on 
land cover (2011 land cover characterizations, www.mrlc.gov/nlcd11_data.php) from the Multi-Resolution Land 
Characteristics Consortium (www.mrlc.gov/) and rasterized the image to an 800 m resolution using the R ‘raster’ 
package52,53.

Tests of niche differentiation.  We tested for niche differentiation between the native and invaded range 
following Broennimann et al.34 using the ‘ecospat’ package in R54. Using climate data from CliMond and PRISM, 
we calculated the extent of the native and invaded niche (niche breadth) and the native and invaded niche cen-
troid, which was weighted by the number of occurrences and the availability of the environment. We defined total 
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niche space using principal components analysis (PCA-env34) for the 100 km background buffers used for build-
ing SDMs (i.e. see ‘SDMs for the native + invaded range and invaded range only’ section below). We quantified 
niche overlap using Schoener’s D, which varies between 0 and 1 (zero and complete niche overlap, respectively). 
We tested if the invaded niche was more similar to the native niche than expected by chance using a permutation 
test (N = 999 permutations) for niche similarity (i.e. are invaded occurrences in the invaded range more similar to 
the native niche than expected by chance)34. We also characterized the niche breadth and overlap along individual 
environmental axes (Electronic Supplementary Materials).

Data preparation for SDMs.  We manipulated and analysed spatial data in the R environment version 
3.4.152 using the geospatial data abstraction library (GDAL) implemented in package ‘rgdal’ and the Geometry 
Engine Open Source (GEOS) implemented in the package ‘rgeos’55. To manipulate spatial point data, we used the 
‘sp’ package55–57.

Prior to analyses, we removed all records that were geographic outliers, duplications, or had very low coor-
dinate precision (<0.1 decimal degrees, ~10 km precision), which left 1,453 records (hereafter: filtered data-
set). Within this filtered dataset, occurrence points were highly unevenly distributed because of variation in 
natural occurrences and sampling biases. In particular, the species’ native range (SW U.S., NW Mexico) was 
far more heavily sampled than nearly all of the invaded range. To minimize the disparity in sampling density 
among geographic areas we down-sampled occurrence records to a 50 km grid, resulting in dataset containing 
791 occurrences (hereafter: native + invaded dataset). The SDMs we present in this paper were generated using 
this native + invaded dataset but for comparison, we also performed analyses on the 1,453-record filtered dataset 
(reported in Electronic supplementary material, Fig. S8).

SDMs for the native + invaded range and invaded range only.  We built SDMs using Maxent version 
3.4.158,59 and Boosted Regression Trees (BRT)60. The two approaches produced similar results and we therefore 
focus on the Maxent models and present BRT methods and results in the Electronic Supplementary Materials. 
One set of models was built based on the native + invaded occurrences (n = 791) and a second set included only 
those in the invaded range (n = 427). The invaded range was defined using expert-drawn range maps from before 
most of the invasion occurred25. We used the ‘dismo’ package61 to build Maxent models and the ‘gbm’ package62 
to build boosted regression tree models. We also used the packages ‘ROCR’63 and ‘rmaxent’64 for evaluating mod-
els and for generating rapid model projections. We projected models using the ‘project’ function in the package 
‘rmaxent’64. Last, we visualized all projections using the package ‘rasterVis’65.

For Maxent, we generated background points by selecting points from a polygon object generated by drawing 
100-kilometer buffers centered on each presence point and dissolving overlaps. We randomly selected 10,000 
points from the polygon while accounting for differences in area of raster cells at higher latitudes10. Background 
points generated this way capture the relevant climatic variation within the area of dispersal41,66, while balancing 
the tendency for inflated validation metrics (e.g. AUC) resulting from sampling large areas67.

We trained the model with 80% of the occurrence and background data and withheld 20% for model valida-
tion. Models were built allowing for all feature types10 and with a regularization parameter of 3 (‘betamultiplier’), 
which had the best performance among models where we varied the regularization parameter from one to five68. 
Finally, we built five models with five-fold cross validation (25 total models) to account for potential variation in 
model parameters.

We used Multivariate Environmental Similarity Surfaces (MESS) to classify analogous climate regions in 
North America that were used for two purposes: (1) to identify appropriate unoccupied habitats (e.g. areas under 
threat of invasion) for model projections and (2) to calculate evaluation metrics for sequential historical models 
using only relevant future occurrence records (see ‘Range expansion dynamics’ below). For all models, we cal-
culated MESS based on background points within the 100 km background buffers used for model-building7,9. 
Analogous climate areas were defined as having similarity values greater than 0. For models built with the 
native + invaded and invaded range datasets, we found that the conterminous United States was deemed as cli-
matically similar enough to be suitable for accurate model projection.

To determine which climatic variables most negatively influenced the probability of occurrence, we gener-
ated limiting factor maps using the ‘limiting’ function in the package ‘rmaxent’64. This function identifies which 
bioclimatic variables weigh most negatively on the predicted probability value at each raster cell in a Maxent 
projection9,64. Identifying limiting factors in unoccupied regions can indicate which factors most likely hinder 
range expansion.

Model evaluation.  We evaluated model performance using two statistics: Area Under the Curve (AUC) and True 
Skill Statistic (TSS). AUC (also referred to as ‘ROC’) scores evaluate how well a model performs relative to ran-
dom chance and gauges the model’s discrimination ability69. We computed two values for AUC: (1) AUC-train, 
calculated using training data to determine how well the model predicts the data used in model building and (2) 
AUC-test, calculated using testing data retained for validation to evaluate the ability of the model to predict new 
information.

We calculated the True Skill Statistic (TSS)70, which describes the ability of a model to correctly classify pres-
ences and background data.

= + −TSS True Positive Rate (TPR) True Negative Rate (TNR) 1

TSS values range from 1, which is indicative of perfect accuracy (i.e. models predict all presences), to −1, 
which is indicative of perfect inaccuracy (i.e. models do not correctly predict any presences). TSS = 0 indicates 
that the model performs no better than random. We evaluated TSS at a model-dependent threshold value, at 
which the sum of TPR and TNR was maximized (threshold values ranged between 0.5 to 0.65)71,72.
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Range expansion dynamics.  To examine the temporal dynamics of invasion we conducted two series 
of analyses on five data subsets each of which contained all of the records in the native + invaded dataset that 
had been collected up to the years 1970, 1980, 1990, 2000, and 2010 (n = 146, 235, 309, 390, 458); prior to 1970, 
there were too few records to build reliable models. First, to characterize the fine-scale rate of spread across 
North America, we calculated the Area of Occupancy (AOO) as the number of grid cells (30 arcsecond size) with 
records. We also built SDMs at each time point (same methods as for the datasets described above) to visually 
compare projections and to quantify the proportion of grid cells with a predicted probability of occurrence ≥0.5. 
We evaluated these models in two ways. First, we calculated evaluation metrics using a testing dataset withheld 
during model building. Second, we evaluated the models’ ability to predict future invasion by calculating evalua-
tion metrics (AUC and TSS) using all future occurrence records found in analogous climate space. For sequential 
historical models, only subsets of the US contained analogous climates. Therefore, only occurrence records that 
occurred within those regions were used to calculate evaluation metrics base on future prediction of occurrences.

Second, we examined whether the pattern of range expansion was more consistent with wave-like versus 
stochastic movement. Wave-like movement causes higher levels of spatial autocorrelation than stochastic move-
ment among occurrences because the bulk of propagule movement is local73. We used the filtered dataset (2017) 
to assess spatial autocorrelation at three spatial scales: single nearest neighbor, ten nearest neighbors, and all 
neighbors within a 50 km radius. To determine the extent of spatial autocorrelation, we calculated the join-count 
statistic which tallies the number of links between nearest neighbors (i.e. presence-presence, presence-absence, 
absence-absence). To determine number of same-type joins that would be expected by chance we generated 999 
permuted datasets and calculated the join-count statistic for each. To determine if patterns of spatial autocorrela-
tion were different between native and invaded ranges, we performed analyses separately for each region. We used 
the ‘spdep’ package to perform spatial autocorrelation analysis74,75.

Projected future distributions.  To make predictions about potentially suitable future habitats, we 
obtained the same bioclimatic variables for CliMond from the general circulation models (GCM) CSIRO-Mk3.0 
and MIROC-H for the A1B and A2 SRES climate scenarios (A1B is based on lower CO2, N2O, CH4, and SO2 
emissions than A2) for 2030 and 2070 (IPPC IV SRES 200776). The CSIRO-Mk3.0 and MIROC-H GCMs models 
provide predicted values for each of the CliMond bioclimatic variables and also perform well in the generation of 
future climate scenarios51. We projected models using the ‘project’ function in ‘rmaxent’64 for the native + invaded 
models and invaded only models and visualized the resulting shifts in distributions.

Data Availability
All data was gathered from publically available sources and will be made available in the format used for analy-
sis at the Data Repository for the University of Minnesota (DRUM; www.lib.umn.edu/datamanagement/drum).
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