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Abstract
Estimating the density and distribution of invasive populations is critical for management
and control efforts, but can be a challenge in nascent infestations when densities of
populations are low. Statistically valid sampling designs that account for imperfect
detection of individuals are needed to estimate densities across time and space reliably.
Survey methods that yield reliable estimates allow managers to determine how invader
biomass impacts ecosystem services and evaluate population trends and effectiveness of
control measures. We investigated the use of distance sampling by SCUBA divers to
determine densities of invasive zebra mussels (Dreissena polymorpha) in two recently
invaded lakes in central Minnesota. This framework allows divers to cover the large areas
necessary in low-density, recent infestations. We estimated that a diver could detect
between 5% and 41% of the mussels present in the surveyed area, depending on the
specific diver and on whether the lake bottom was vegetated. We also found that a key
assumption of conventional distance sampling (e.g., perfect detection on the transect line)
was not met. Therefore, accurate density estimates required a double-observer approach.
These results highlight the importance of accounting for detectability when comparing
estimates over time or across lakes, particularly when different observers conduct surveys.
Further evaluation is needed to determine if changes in field sampling techniques can
meet the assumptions behind conventional distance sampling for freshwater mussels.
Furthermore, we suggest that the efficiency of distance sampling should be compared to
alternatives such as quadrat sampling across a range of mussel densities.
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Introduction17

Native to a small region of southern Russia and the Ukraine (Stepian et al. 2013),18

zebra mussels (Dreissena polymorpha Pallas 1771) have spread throughout Europe (A. Y.19

Karatayev, Burlakova, and Padilla 1997; A. Y. Karatayev, Padilla, and Johnson 2003)20

and North America (Benson 2013) to become one of the world’s most widespread and21
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damaging aquatic invasive species (A. Y. Karatayev et al. 2007). The economic costs22

of these invaders in the United States is estimated to be in the hundreds of millions of23

US dollars per year with impacts including the fouling of water treatment and power24

plant intake pipes, hydropower facilities, as well as impacts to recreation, tourism, and25

lakefront property (O’Neill, Jr. 2008; Bossenbroek et al. 2009; Limburg et al. 2010).26

Ecological impacts arise from the ability of zebra mussels to reach high population27

densities, smothering and outcompeting native species. High densities of these suspension28

feeders lead to the removal of high volumes of planktonic organisms from lakes and29

rivers, resulting in population declines and local extinctions of native mussels and other30

invertebrates (A. Y. Karatayev, Burlakova, and Padilla 1997; Ward and Ricciardi 2013),31

damage to fish populations (D. L. Strayer, Hattala, and Kahnle 2004; McNickle, Rennie,32

and Sprules 2006; Lucy et al. 2013; David L. Strayer and Malcom 2018), and the33

restructuring of aquatic food webs (Higgins and Vander Zanden 2010; C. Mayer et al.34

2013; Bootsma and Liao 2013).35

Ecological impacts scale with zebra mussel density and biomass, but quantitative data on36

zebra mussel populations are only available for a few water bodies (Higgins and Vander37

Zanden 2010). Control efforts using chemical treatments and physical removal (e.g.,38

Wimbush et al. 2009; Lund et al. 2018), have to date focused on newly invaded water39

bodies with low-density, localized infestations. In these water bodies, mussels are more40

challenging to locate, and even intensive underwater surveys can fail to detect mussels41

that remain after treatment (Lund et al. 2018). To determine how well treatments reduce42

densities and how environmental conditions influence treatment efficacy, efficient and43

reproducible survey designs are needed to facilitate comparisons across space and time—44

as is the case for surveys of native clams and other freshwater mollusks (Dorazio 1999).45

In the North American Great Lakes, ship-based surveys using Ponar grabs and sled46

dredges have typically been used to survey zebra mussel populations (Marsden 1992;47

Nalepa, Fanslow, and Pothoven 2010; David L. Strayer and Malcom 2018). Surveys48

of inland lakes occur over a much smaller areas and are often conducted with a self-49

contained underwater breathing apparatus (hereafter, SCUBA) (e.g., Kumar, Varkey,50

and Pitcher 2016), which may offer more reliable assessments of distribution and density.51

SCUBA-based methods often apply quadrat surveys (D. L. Strayer and Smith 2003).52
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However, quadrats may be suboptimal when attempting to survey large portions of a53

water body due to the effort required to move between distant sites (e.g., Giudice et54

al. 2010; Ferguson et al. 2014). Line transects, which sample along a continuous path,55

are an attractive alternative to quadrat surveys because they minimize the time spent56

moving between sampling locations.57

To estimate changes in relative densities of populations separated in time or space,58

we often need to account for changes in the detectability of individuals (Mackenzie59

and Kendall 2002). Techniques such as capture-recapture methods (Huggins 1991),60

removal estimators (Nichols et al. 2000), or distance sampling (Buckland et al. 2001)61

are commonly used to account for variation in detectability that occurs due to changing62

environmental conditions or due to different observers. A common issue with line transects63

is that the probability of detecting individuals can decline with distance from the transect64

line. This effect can be modeled with distance sampling, where the surveyor measures65

the perpendicular distance of each detected individual (or cluster of individuals) from the66

transect line. This additional information is then used to model how detection changes67

as a function of distance, and thus, to correct for imperfect detection (Buckland et al.68

2015). An important assumption of conventional distance sampling is that all individuals69

on or near the line are detected. Double-observer designs relax this assumption by70

estimating the probability that both observers detect a mussel through sight-resight71

methods (Borchers et al. 2006).72

Here, we apply single- and double-observer distance sampling to estimate population73

densities of zebra mussels in two recently invaded lakes in central Minnesota. We tested74

whether the underlying assumptions of conventional distance sampling were met and75

illustrate how to analyze the data using existing tools. Furthermore, we show how to76

extend standard approaches to account for unimodal detection functions and covariates77

that affect both mussel detection and density.78

3



Methods79

Study area80

We surveyed for zebra mussels in Lake Sylvia in Stearns County, MN and Lake Burgan81

in Douglas County, MN (Figure 1). Lake Sylvia covers an area of 34 hectares and has82

a maximum depth of 15 meters (m) while Lake Burgan covers an area of 74 hectares83

and has a maximum depth of 13 m. Zebra mussels were first verified in Lake Sylvia in84

2015 (personal communication Christine Jurek, Caleb Silgjord Minnesota Department85

of Natural Resources) and Lake Burgan in 2017 (personal communication Lucas Raitz,86

Michael Bolinksi Minnesota Department of Natural Resources).87

Survey design88

Lake Sylvia89

We allocated survey effort using a stratified systematic sampling design (Pooler and90

Smith 2005). First, we surveyed eight transects in the area in which zebra mussels were91

initially discovered and reported to the Minnesota Department of Natural Resources. We92

concentrated effort this way because areas where mussels are first discovered—assumed93

“infestation zones”—are typically the sites targeted for SCUBA surveys. Transects in94

the infestation zone were each 30 m long and spaced 3 m apart, though transects were95

stopped short of 30 m if divers ran into the thermocline, where visibility was found to96

drop precipitously. We then surveyed two peripheral clusters of 3 transects each, located97

150 m to either side of the infestation zone. The transects in these clusters were 3 m98

apart. Finally, we conducted ten outlying transects dispersed evenly along the remaining99

shoreline (Figure 1A). Survey points were determined using a bathymetry shapefile in100

ArcMap provided by the Minnesota Department of Natural Resources. The start of a101

transect was placed in a depth of 3 to 8 m and oriented perpendicular to the shoreline to102

cover a range of depths. We located the start point of the transect using a GPS unit103

(Garmin GPSMAP 64s).104
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Figure 1: Transects for zebra mussel surveys conducted in Lake Sylvia (panel A) and
Lake Burgan (panel B) in the summer of 2017. Transects in normal-effort strata are
given as black dots. Red triangles indicate transects in the high-effort strata, where
we conducted 8 transects, green diamonds represent the peripheral clusters, where we
conducted 3 transects at each location.

Lake Burgan105

In Lake Burgan, we did not know the initial location of the zebra mussel report so we106

used a modification of the above survey design. We initially surveyed eleven transects107

evenly spaced along the perimeter of the lake, with the first transect chosen near the108

boat launch (Figure 1B). After sampling these initial eleven transects, we sampled an109

additional seven transects, spaced 3 m apart, in the area with the highest observed110

density. We treated the eight transects taken in this region as a high-effort stratum. The111

remaining ten transects were allocated into a second, normal-effort stratum.112

Data Collection113

Lake Sylvia114

We surveyed Lake Sylvia using a single dive team consisting of two people. The first115

(primary) diver was responsible for detecting zebra mussels. Whenever the primary diver116

detected a zebra mussel (or cluster of mussels), she recorded the number of mussels117

in the cluster and the distance from the transect start to the point where we made118

the detection (hereafter transect distance), approximated to the nearest 0.25 m. The119
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diver also measured the perpendicular distance from the location of the detection to the120

transect line (hereafter detection distance) using a meter tape measured to the nearest121

quarter centimeter. The primary diver also classified and recorded the substrate that the122

zebra mussel was found on (hereafter “fine-scale substrate”) using one or more of the123

following categories: mud, sand, gravel, pebble, rock, vegetation, wood, native mussel,124

metal, or other substrate. These substrate determinations were made qualitatively by125

the dive team.126

To determine how detection and density varied due to environmental conditions, the127

second diver collected habitat and environmental data along each transect. The second128

diver classified the dominant substrate types in the current segment. Substrate classi-129

fications included mud, silt, sand, gravel, pebble, rock, and other. The diver recorded130

multiple substrate types when there was no clear dominant substrate type or when131

habitats were interspersed. In addition, the diver recorded the presence or absence of132

plant cover. Whenever there was a change in the substrate type or plant presence, she133

recorded the new substrate, plant presence, depth, and the transect distance where the134

change occurred. The segments formed by these changes were later used to model spatial135

variability in zebra mussel densities.136

Lake Burgan137

In Lake Burgan we collected data using the same methods as described for Lake Sylvia,138

except that each transect was surveyed independently by two dive teams, each team139

consisting of two members. We alternated which team went first on each transect, with140

the second dive team beginning their survey after the first team finished so that each141

team collected data independently.142

Study data were entered into a REDCap (Research Electronic Data Capture) database143

hosted at the University of Minnesota (Harris et al. 2009). REDCap is a secure, web-based144

application designed to support reliable data capture for research studies by providing145

quality control of data entry, and auditing trails for data manipulation and export.146
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Statistical analyses147

Although we present data on our survey design and data collection for both Lake Sylvia148

and Lake Burgan, we did not try to estimate detection probabilities or densities in Lake149

Sylvia because a critical assumption of conventional distance sampling, namely perfect150

detection near the transect line, was not met (Figure 2). This assumption can be relaxed151

using double-observer surveys as implemented in Lake Burgan. Therefore, the statistical152

methods described in the following sections only apply to the data collected in Lake153

Burgan.154

We estimated zebra mussel density using a two-stage approach, also called density surface155

modeling (following D. L. Miller et al. 2013 as illustrated in Figure 3). In the first156

stage, we fit a detection function using the observed distances, including the use of157

the sight-resight data collected by our observers to estimate the maximum detection158

probability. This allowed us to determine whether detection is perfect near the transect159

line, an important assumption of conventional distance sampling (Buckland et al. 2001).160

In the second stage, we estimated density by fitting a model to the segment-level counts161

corrected for the surveyed area and estimated detectability in each segment (Hedley and162

Buckland 2004). A critical assumption of this analysis and other distance sampling163

methods is that the density of animals does not vary with distance from the transect line.164

We considered this assumption to hold in our study since: 1) we used a systematic-random165

sampling design to determine transect locations; and 2) our transects were narrow and166

placed in relatively homogeneous habitat.167

We present two, parallel analyses of the Lake Burgan data. The first approach, which we168

refer to as the simple density estimator, uses existing statistical tools to estimate density169

assuming a single detection function applies to both observers and all transects. The170

second approach, which we refer to as the covariate-modified density estimator, accounts171

for strata, unimodal detection functions, and covariates that affect both zebra mussel172

detection and density. Although this approach requires a more customized analysis, it is173

appealing because it provides a framework for investigating the effects of covariates on174

detection and density. In the following sections, we describe the steps for these analyses175

in more detail.176
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Normal-effort stratum High-effort stratum

Figure 2: Detections of mussels along two transects in Lake Burgan by two dive teams.
The dotted gray line denotes the transect line and each point denotes the recorded
position of a detected zebra mussel. Panel A illustrates a transect in the normal-effort
stratum, panel B illustrates a transect in the high-effort stratum. All distances are given
in meters.
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Figure 3: Work flow of the two-stage modeling approach. Estimation of animal density
requires a count of observed individuals in each transect (ni) where the total counts over
T transects is N , the length (li) and width (w) of the transect, and the detectability of
animals in the transect (Pi). The density of the sample is denoted as D.
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Detection estimation177

We applied sight-resight distance sampling in Lake Burgan to determine whether the178

assumption of perfect detection near the transect line, as required by conventional179

distance sampling, was met. Before we could implement this approach, we needed to180

decide which mussels were seen by both dive teams and which were seen by only the181

first or second dive team. We did not mark individuals detected by the first dive team182

because marks could have affected their detectability by the second team. Therefore, we183

used the proximity of the detections to each other to classify whether a pair of zebra184

mussel detections were a resight of a single zebra mussel (Figure 2).185

We classified two detection events as the same zebra mussel when the difference in the186

detection distances for the pair was less than 0.2 m, and the difference in transect distances187

between the pair was less than or equal to 0.25 m. We determined these thresholds188

after visualizing nearest neighbor distances, but note our analyses were extremely robust189

to changes in these classification distances (Appendix 2). The thresholds we used here190

are reasonable because at these low densities it was apparent when the two dive teams191

detected the same mussel (e.g., Figure 2). At higher densities, there would have been192

much more uncertainty about whether two detections at similar locations corresponded193

to the same zebra mussel or not. In such cases, it would be appropriate to mark mussels194

and use dependent double-observer methods. Alternatively, more formal approaches to195

incorporating measurement error into distance sampling could be applied (Conn and196

Alisauskas 2018).197

Simple detection estimates Histograms of the detection distances (Figure 4) sug-198

gested that the maximum detection probability might have occurred off the transect line.199

To ensure that standard, monotonic distance functions could be applied, we left-truncated200

the detection distance at 0.2 m. Truncation removed the potential effects of the hump201

and allowed us to use the standard distance functions without any modifications.202

We modeled detection probabilities using two model subcomponents. The first subcom-203

ponent, g(y), describes how distance (y) leads to changes in the probability of detection204

and is determined by modeling the distribution of detection distances. We applied the205

half-normal distance function, defined as g(y) = e−(y−0.2)2/2σ2 , where y − 0.2 is the206
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Figure 4: Stacked histogram showing the total number zebra mussel detections made by
dive team 1 and dive team 2 in the summer of 2017. Panel A gives the total counts in
Lake Sylvia from 24 transects and panel B gives the total counts in Lake Burgan from 18
transects. Distance bin widths are 0.075 m.

detection distance, accounting for the 0.2 m truncation distance, and σ controls the scale207

of the detection function (Buckland et al. 2015). All estimates for this detection model208

were made using the mrds (mark-recapture distance sampling) package in R (J. Laake et209

al. 2018).210

We used a second subcomponent of the detection function to scale the distance function211

by the maximum probability of detection, estimated from the sight-resight data. This212

second piece of the detection function used a sight-resight model to estimate the detection213

probability at 0.2 m. The probability of detection by either observer at the truncation214

distance is π(0.2) = π1(0.2) + π2(0.2)− π1(0.2)π2(0.2), where πk(0.2), for k = 1, 2, is the215

probability that the kth dive team detects a mussel at the detection distance of 0.2 m.216

For the simple density estimator, we assumed the dive teams had the same detection217

function and estimated π(0.2) using the mrds (mark-recapture distance sampling) package218

in R (J. Laake et al. 2018). We then combined the two model components to determine219

the probability of detecting a zebra mussel cluster within our transect by integrating the220

distance function over the transect width to give the probability of detecting a mussel in221

the transect, P = π(0.2)
∫ 1

0.2 g(y) dy.222
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The sight-resight model used the point independence assumption described by Borchers223

et al. (2006), which accounts for the effects of unmodeled covariates that can induce224

unexpected correlations between observers. This can occur if, for example, both dive225

teams find it easier to detect larger mussels and mussel size is not included in the226

model. Under these conditions the observers’ detections may be correlated even though227

dive teams act independently. Point independence addresses this issue by modeling228

the detection probability at a single detection distance, usually specified to be where229

detection is maximized (here, at 0.2 m).230

Covariate-modified detection estimates Next, we explored estimators of detection231

and density that relaxed some of the assumptions of the simple density estimator. In232

particular, we fit a unimodal detection function and included covariates that were thought233

to influence detection probabilities.234

Our detection distances illustrated in Figure 4 indicated that the detection function may235

be unimodal, with the maximum detection probability occurring off the transect line.236

We tested two alternative models describing how detection changed with distance. The237

first model we fit was the half-normal detection function, which assumes detection is238

maximized on the transect line. This detection function was defined as g(y) = e−y
2/2σ2

239

over the width of the transect (0 ≤ y ≤ 1). Second, we fit the unimodal function of240

Becker, Christ, and Reed (2015), which uses two truncated half-normal distributions that241

share a common mode, µk ( where k = 1 or 2 for each of the observers). The unimodal242

detection function for observer k was defined as g(y) = e−(y−µk)2/2σ2
l for 0 ≤ y ≤ µk243

and g(y) = e−(y−µk)2/2σ2
g for µk < y ≤ 1. In this model, σl served as the scale parameter244

for distances less than the mode and σg served as the scale parameter for distances245

greater than the mode. We assumed that the detection peak was the same for both246

observers (µ1 = µ2) and estimated parameters by maximizing the log-likelihood of g(y)247

using the nloptr package in R (Ypma 2015). We selected the best detection model in248

each lake using AIC, an estimate of the Kullback-Liebler divergence, which measured the249

relative discrepancy between each model and reality. The AIC is a popular approach for250

measuring model parsimony, representing a trade-off between model fit and complexity251

with the goal of achieving optimal predictive ability (Taper and Ponciano 2016).252
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In the unimodal model, the probability of detection by either observer at the mode, µ,253

was modeled as a logit-linear function of the observed covariates: plant presence, water254

clarity, and observer. Thus, the detection probability at the mode for observer k in255

segment j was modeled as logit(πk,j(µk,j)) = β0 + β1Plantj + β2Clarityj + β3Observerk,256

where Clarity was a continuous variable, Plant was an indicator variable that was 0 when257

plants were absent and 1 when present, and Observer was an indicator variable that was258

0 for dive team 1 (k = 1) and 1 for dive team 2 (k = 2). All estimates of π(µ) were made259

using the mrds (mark-recapture distance sampling) package in R (J. Laake et al. 2018).260

Density estimation261

We estimated densities in Lake Burgan following the two-stage approach described in262

Hedley and Buckland (2004). As in the detection models described above, we present two263

parallel analyses of the Lake Burgan data. The first analysis applied existing statistical264

tools to the truncated data. We then showed how to extend this analysis to account for265

strata and covariates that affect zebra mussel density.266

Simple density estimator Denote the counts for the ith transect as ni, the total267

counts in the lake over T total transects as N =
∑T
i ni, the length of each transect as li,268

the total length of all transects as L =
∑T
i li, and the estimated detection probability as269

P̂ . The estimated density was then D̂ =
∑T

i
ni/P̂

2w
∑T

i
li

(Buckland et al. 2001). The variance270

in the estimated density was271

var(D̂) = D̂2
(

var(N)
N2 + var(P̂ )

P̂ 2

)
. (1)

The first term in equation 1, var(N), was the variance in the total counts over all272

segments (N =
∑
i ni), while the second piece was the variance in the detectability,273

var(P̂ ). We used the design-based estimator for the variance in the total counts, var(N) =274 (
L
∑T
i li(ni/li −N/L)2

)
/(T − 1), where the contribution of each segment to the total275

variance was weighted by the segment length. The R package mrds estimates P̂ using276

maximum likelihood and computes the variance in detectability from the Hessian matrix277

(J. Laake et al. 2018).278
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Covariate-modified density estimates We modeled the total zebra mussel counts279

at the segment-level, using covariates to explain variation in density. Segments were280

defined based on changes in habitat characteristics along the transect as described in281

the data collection section. We assumed, conditional on environmental covariates, that282

abundance within each segment followed a Negative Binomial distribution. We used the283

log of the segment survey area multiplied by the estimated average probability of detection284

in the segment as an offset in the model to control for survey effort and detectability.285

This transformed the observed counts into zebra mussel densities. We used a log-link to286

model the effects of plant presence (classified as presence/absence), depth, and gravel287

substrate (classified as presence/absence) as covariates of zebra mussel density. Although288

we recorded multiple substrate types, gravel was the only type that had enough variation289

to be considered as a predictor variable. We used AIC to test whether a smoothing290

spline of segment location was needed to smooth the spatial variation in density that was291

not explained by the environmental covariates. Density models were fit using maximum292

likelihood estimation implemented in the R package mgcv (Wood 2006).293

We estimated the density in the jth stratum using the estimator, D̂j =
∑Tj

i=1

(
n̂i/P̂i

)
/2w

∑Tj

i=1 li,294

where the summation runs over all Tj segments in the stratum. The terms in the295

sum are, n̂i, the estimated count in the ith segment in stratum j, P̂i, the estimated296

detection probability in the ith segment of stratum j, and li, the length of segment i in297

stratum j. The detection probabilities were estimated using the methods described in298

the previous section, and the counts, n̂i, were modeled in the second stage of the density299

surface model. The overall population size was determined by weighting the estimates300

from each stratum in proportion to the amount of area in the lake they represented,301

D̂ = whighD̂high + wlowD̂low, where the stratification weight for high-effort strata was302

whigh = 1/11 and for normal-effort strata was wlow = 10/11.303

We applied the conditional covariance formula (Bain and Engelhardt 2000) to derive a304

variance expression that propagated the uncertainty from the detection model through to305

the uncertainty estimate for zebra mussel density (derivation given in Appendix 1). The306

total variation in density was calculated by summing the variances and covariances across307

all segments, with the covariance terms used to account for correlation resulting from308

using a common detection model to adjust counts in all segments (J. Fieberg and Giudice309
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2007). The resulting covariance between the density estimates has two terms, analogous310

to the covariate independent case in equation 1. Below we indicate the covariance for311

segment 1 in stratum j and segment 2 in stratum j′ (D1 and D2):312

Cov
[
D̂1, D̂2

]
= E

[
Cov(D̂1, D̂2|P̂1, P̂2)

]
+ Cov

[
E(D̂1|P̂1), E(D̂2|P̂2)

]
. (2)

The first term in equation 2 accounts for uncertainty in the counts, given the estimated313

detection model parameters, while the second term accounts for uncertainty in the314

detection parameters.315

We determined the covariance estimates using a parametric bootstrap (Hedley and316

Buckland 2004). For the first term in equation 2, we simulated 104 sets of parameters317

obtained from segment-level count model using a multivariate normal distribution with318

mean given by the maximum likelihood estimates of the density model and covariance319

matrix approximated by the inverse of the estimated Hessian matrix (Bain and Engelhardt320

2000). We used the simulated parameters to predict the counts for each segment, and321

then scaled these counts by the estimated segment-level detection probabilities (P̂i) and322

the amount of area surveyed in each segment. The covariance of these scaled counts was323

then plugged into the first term of equation 2.324

We estimated the second term in equation 2, the covariance matrix of the detectability325

correction estimates, by simulating 104 sets of detectability parameters from a multi-326

variate normal distribution with mean given by the maximum likelihood estimates of327

the detectability function and covariance matrix approximated by the inverse of the328

estimated Hessian matrix (Bain and Engelhardt 2000). We used the simulated detection329

parameters to estimate the segment-level detection probabilities, P̂i. Lastly, we calcu-330

lated the covariance between the segment-level detectability corrections, scaled by the331

estimated segment-level count densities, and plugged the result into the second term of332

equation 2.333

Finally, we the calculated the total variance in the density estimate by using the stratifi-334

cation weights to account for the proportion of lake area surveyed in each strata. We335

scaled the full density covariance matrix, Σ, by the vector of weights (W ) where the ith336

entry of the vector was whigh or wlow, depending whether transect i was in the high- or337
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normal-effort stratum. The total variance in density was then given by WTΣW .338

Results339

Substrate in the Lake Sylvia segments was predominately sand and silt (Table 1). We also340

had a few segments with gravel, pebbles, and rocks. We found that zebra mussels were341

always found in segments with silt and often in segments with sand, broadly consistent342

with the available substrate frequencies. The fine-scale substrates that we found zebra343

mussels predominately attached to in Lake Sylvia, in order of frequency, were wood,344

rocks, and gravel.345

Substrate in the Lake Burgan segments was predominately silt and sand (Table 1),346

followed by gravel, and rocks. We found zebra mussels in habitats at rates similar to347

availability with detections occurring primarily in sand and silt, followed by gravel and348

rocks. Zebra mussels in Lake Burgan were found attached to gravel, rocks, and wood. We349

also detected one mussel attached to a native mussel, one mussel attached to scrap metal,350

and two detections were on other materials such as fabric and unidentified mollusks.351

15



Table 1: The frequency of available substrate types in segments and substrate types in segments where zebra mussel detections occurred (potentially
classified with multiple types so proportions do not sum to 1), and the type of substrate zebra mussels were attached to (proportions sum to 1).

Sand Silt Gravel Pebbles Rocks Wood Native mussel Other

Lake Sylvia
Available coarse spatial scale substrate 0.73 0.70 0.05 0.02 0.02 0.00 0.00 0.00
Coarse spatial scale substrate with mussel detections 0.53 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Fine-scale substrate with mussel attachment 0.00 0.00 0.18 0.00 0.35 0.41 0.05 0.01

Lake Burgan
Available coarse spatial scale substrate 0.88 0.90 0.55 0.00 0.04 0.00 0.00 0.00
Coarse spatial scale substrate with mussel detections 0.91 0.87 0.65 0.00 0.04 0.00 0.00 0.00
Fine-scale substrate with mussel attachment 0.00 0.00 0.46 0.00 0.40 0.06 0.02 0.06
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In the left-truncated detection data set from Lake Burgan, the first dive team made 35352

detections, and the second dive team made 19 detections, with 6 detections being shared353

by both teams for a total of 48 unique zebra mussel detections. In the full detection354

data set, the first dive team made 49 detections while the second dive team made 26355

detections; 9 of the detections were made by both teams for a total of 66 unique zebra356

mussel detections. Of these 66 unique detections, 64 were of single zebra mussels and 2357

were of clusters of size 2.358

Detection estimation359

Simple detection estimates In the left-truncated detection data, set we estimated360

the scale parameter, σ̂, of the detection function to be 0.43 (SE = 0.07). The estimated361

probability of detecting a zebra mussel, P̂ , was 0.24 (SE = 0.08).362

Covariate-modified detection estimates In our analysis of the full detection data363

set, the unimodal detection function was more parsimonious than the half-normal model364

(∆AIC = 0.23). This small difference means we were unable to reliably distinguish365

between these two models.366

We estimated the location of peak detection in the unimodal detection function, µ, at367

0.15 (SE = 0.08) m. The scale coefficient for distances less than µ was estimated as368

σl = 0.11 (SE = 0.09) m and for distances greater than µ was σg = 0.45 (SE = 0.07) m.369

The detection functions for different observers and with plants present and absent are370

illustrated graphically in Figure 5.371

The sight-resight model coefficients suggested that the second dive team had lower372

detection probabilities than the first team and plant presence decreased the probability373

of detecting zebra mussels (Table S1). The positive clarity coefficient suggested that374

detectability increased with water clarity as expected. However, the estimated confidence375

intervals of the clarity effect were very wide and overlapped 0 (Table S1). Therefore,376

we also ran a reduced model with the clarity covariate removed. The model without377

clarity had a lower AIC (Table 2), and reduced the standard error in density due to378

detectability (the second term in equation 1) from 0.05 to 0.008; removing clarity had379

minimal impact on the other regression parameter estimates. Thus, moving forward, we380
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Figure 5: Estimated detection functions in Lake Burgan from the unimodal detection
model. We used a double-observer survey to estimate the detection probabilities for each
team in the presence or absence of plants.
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Table 2: Covariate selection tables for the Lake Burgan analysis. The spatial regression
spline is written as s(Easting, Northing).

log-likelihood k AIC ∆AIC

Detection model
Observer + Plants + Clarity -50.25 5 110.50 0.55
Observer + Plants -50.98 4 109.96 0.00

Density model
Depth + Plants + Gravel + s(Easting, Northing) -45.50 6 143.91 2.85
Depth + Plants + Gravel -46.65 4 141.06 0.00

Table 3: Estimated probability of detecting a zebra mussel in Lake Burgan under different
conditions using the reduced detection model (without the water clarity covariate).

Observer 1 Observer 2

Estimate Standard error Estimate Standard error

No plant cover 0.41 0.08 0.28 0.08
Plant cover present 0.1 0.07 0.05 0.04

only present results using the reduced detection model. The estimated probability of381

detecting a zebra mussel in Lake Burgan for each of the dive teams was low, even under382

favorable conditions, and ranged from 0.08 (dive team 2 with plant cover present) to 0.62383

(dive team 1 with no plant cover present) (Table 3).384

Density estimation385

We constructed 49 different survey segments from the original 18 transects in Lake Burgan.386

Segments were based on observed habitat transitions as described in the methods and387

varied in length from 1 to 30 m. The observed density of zebra mussels in Lake Burgan,388

uncorrected for detection, was 0.08 mussels per square-meter (m−2).389

Simple density estimates In the left-truncated data set, we estimated the overall390

density, corrected for detection, in Lake Burgan to be 0.24 (SE = 0.1) mussels m−2 with391

67% of this error arising due to uncertainty in the detection parameters.392

Covariate-modified density estimates Using the unimodal detection function, envi-393

ronmental covariates, and strata, we estimated the overall density, corrected for detection,394

in our transects to be 0.25 (SE = 0.09) mussels m−2 with 10% of this error arising due395
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Table 4: Estimates of covariate effects in the count and detection models of Lake Burgan.

Variable Parameter estimate Standard error 95% confidence interval

Detection model
observer -0.86 0.38 (-1.61, -0.1)
plants -2.37 0.41 (-3.18, -1.57)

Density model
plants -0.43 0.54 (-1.5, 0.63)
depth -0.05 0.06 (-0.16, 0.06)
gravel 0.12 0.38 (-0.62, 0.86)

to uncertainty in the detection parameters. This estimate was consistent with the simple396

density estimate obtained above, and both estimators led to a three-fold increase in the397

estimated density relative to the observed density.398

In the normal-effort stratum, we estimated densities of 0.28 (SE = 0.11) mussels m−2,399

and in the high-effort stratum we estimated density to be 0.25 (SE = 0.09) mussels m−2.400

Interestingly, the normal- and high-effort strata had nearly the same estimated densities.401

We attribute this result to defining strata in the field using observed densities and not402

testing for statistical differences among transects.403

Our estimate of the scale parameter in the negative binomial distribution was 1.477,404

indicating overdispersion relative to the Poisson distribution. The model without any405

spatial structure was more parsimonious than the model with the spatial smooth term406

(Table 2). Parameter estimates from the generalized linear model indicated that zebra407

mussel densities tended to be lower in shallower areas and in areas with plant cover,408

whereas gravel had a small positive effect on density (Table 4). However, all of these409

covariate estimates had high uncertainty with confidence intervals that included zero.410

Discussion411

We have demonstrated that line transects with double-observer surveys can be suitable412

for estimating invasive zebra mussel densities in newly infested lakes. This method allows413

researchers to cover more area compared to quadrat surveys, at the cost of imperfect414

detection. Importantly, we found that accounting for the low detectability of zebra415

mussels led to estimates of density over three times higher than the observed densities.416

Our estimates were robust, with both the simple and covariate-modified estimators giving417
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similar answers. Nonetheless, the double-observer survey in Lake Burgan highlighted418

the difficulty that our dive teams had in detecting zebra mussels even near the transect419

line. Thus, we conclude that single-observer methods are generally not appropriate for420

estimating zebra mussel densities.421

Detection data from both Lake Sylvia and Lake Burgan exhibited a peak near 0.2 m422

from the transect line, suggesting that detection probabilities may have been highest just423

off the transect line (Figure 4). We were surprised to find this peak in our dive surveys,424

though similar patterns are known to occur in many aerial surveys (Quang and Lanctot425

1991). Although we demonstrated methods that provide a solution to this phenomenon,426

we emphasize that the statistical evidence favoring the unimodal detection function that427

we used is still equivocal and more samples will be needed to determine whether this428

effect is real or an artifact of sampling variation. Alternatively, density can be estimated429

after first truncating the data to remove this peak. Truncation eases the analysis by430

allowing the application of standard detection functions that can be implemented in431

existing R packages such as mrds (J. Laake et al. 2018).432

It is worth considering the potential causes of a unimodal detection function in dive433

surveys to determine whether it can be eliminated by improvements in study design. In434

aerial trials that display unimodal detection, low detection near the transect line arises435

due to the fact that animals close to the transect appear to pass by more quickly than436

animals further away (Becker and Quang 2009). One suggestion to address this effect is437

to have observers focus their eyes more on areas near the transect line (Buckland et al.438

2015). We emphasized the importance of detecting all mussels on or near the transect439

line to our divers, but perhaps additional training in this area would be helpful. We also440

know of at least one case when our lead diver missed a zebra mussel near the transect441

because she returned to the transect line ahead of where she left to measure the detection442

distance. Finally, laying down the transect line may kick up silt and cover nearby mussels.443

This effect could be eliminated by having divers start their search a small distance away444

from the transect line.445

A complication in our preparation of the field data for analysis was determining whether446

detections made by the first observer were also made by the second observer. Error in447

the distance measurements made classifying redetections more difficult than anticipated.448
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Alternatives, such as the removal design (Moran 1951; Otis et al. 1978), remove individuals449

from the population once they are detected. This ensures that the second observer always450

detects new individuals. The cost of this design is that the second observer’s detection451

history is conditional on the record of the first observer. Under this constraint, we have452

less information for estimation and must assume that the two observers have the same453

detection function, an assumption that could be problematic based on the differences454

between observers found here. This assumption can be made more tenable by rotating455

the role of primary and secondary observers as we did in our surveys (Cook and Jacobson456

1979).457

Previous studies have found that sediment grain size affects the ability of zebra mussels to458

attach to lake bottoms (Berkman et al. 1995). We found no evidence that the density of459

zebra mussels was preferentially linked to certain substrate types, though our study was460

not specifically designed to detect these effects as it was not balanced across substrate461

types. Further, our classification of substrate types was qualitative, so we were not able462

to distinguish fine-scale changes in the spatial distribution of sediment size. Also, the463

lakes we studied were at very low densities of infestation; substrate associations may464

emerge as populations reach higher densities. We did find evidence that the detection of465

zebra mussels was linked to habitat, with detection being significantly lower in segments466

with plant cover. This effect on detection can make defining sampling strata post-hoc467

problematic when not accounting for detectability.468

We see several available options for obtaining more precise distance survey estimates under469

the constraint of limited survey effort. It may be possible to combine transect surveys470

with remote-sensing technologies (e.g., acoustic surveys). SCUBA-surveys could be used471

to calibrate more extensive, but less accurate counts via a double-sampling approach472

(Thompson 2004). Alternatively, remote sensing data could be used for stratification,473

allowing for increased survey effort in areas where mussels are most likely to be detected.474

Finally, an increase in the number of transects surveyed would lead to reduced variability475

in the counts. Thus, it may be better to survey faster at the cost of lower detection if476

this allows divers to incorporate additional transects.477

Several studies have used surveys of freshwater mussels to examine the trade-offs be-478

tween survey efficiency, coverage, and the probability of discovering low-density mussel479
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populations (e.g., Green and Young 1993; Metcalfe-Smith et al. 2000; Smith 2006).480

Understanding how these trade-offs constrain our ability to estimate population density481

and distribution is essential for optimizing effort and may have important implications482

for our ability to evaluate control measures on invasive species such as zebra mussels.483

A major limiting factor that prevents the broad application of optimal survey theory is484

that the trade-off function, describing how changes in search efficiency affects coverage485

and detectability, is generally unknown (Giudice et al. 2010).486

We are aware of one previous study that compared distance- and quadrat-based surveys487

of freshwater mussels (briefly described in D. L. Strayer and Smith 2003). In that study,488

survey methods were implemented in equal-sized areas. Quadrats generally provided489

more precise estimates of density though differences between the two methods decreased490

as densities increased. We expect that, relative to quadrat counts, distance surveys491

should be able to cover a larger area in an equal amount of time. To compare survey492

efficiencies, it would be necessary to control survey time (or cost) rather than survey493

area. Future data collection efforts should attempt to capture information on survey494

effort, which would allow for comparisons among the efficiencies of survey methods.495

Comparisons of survey efficiencies are especially relevant to efforts to monitor recently496

invaded lakes where densities need to be estimated over large areas of lake bottom to497

determine the extent of the invasion.498
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