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Abstract

Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive

species of concern in the United States. Where established, starry stonewort can interfere

with recreational uses of water bodies and potentially have ecological impacts. Incipient

invasion of starry stonewort in Minnesota provides an opportunity to predict future expan-

sion in order to target early detection and strategic management. We used ecological niche

models to identify suitable areas for starry stonewort in Minnesota based on global occur-

rence records and present-day and future climate conditions. We assessed sensitivity of

forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5,

RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and

MRI). From our niche model analyses, we found that (i) occurrences from the entire range,

instead of occurrences restricted to the invaded range, provide more informed models; (ii)

default settings in Maxent did not provide the best model; (iii) the model calibration area and

its background samples impact model performance; (iv) model projections to future climate

conditions should be restricted to analogous environments; and (v) forecasts in future cli-

mate conditions should include different future climate models and model calibration areas

to better capture uncertainty in forecasts. Under present climate, the most suitable areas for

starry stonewort are predicted to be found in central and southeastern Minnesota. In the

future, suitable areas for starry stonewort are predicted to shift in geographic range under

some future climate models and to shrink under others, with most permutations indicating a

net decrease of the species’ suitable range. Our suitability maps can serve to design short-

term plans for surveillance and education, while future climate models suggest a plausible

reduction of starry stonewort spread in the long-term if the trends in climate warming

remain.
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Introduction

Starry stonewort (Nitellopsis obtusa, Characeae) is a species of concern for both its endangered

status (in parts of its native range in Europe and Asia) and its invasive status (in North Amer-

ica). The ‘starry’ of its common name comes from its characteristic star-shaped bulbils, starchy

reproductive structures that enable spread via asexual reproduction [1]. In North America,

female individuals of this species have not been detected to date [2]. It has a higher ecological

plasticity than other charophytes [1,3]. For example, starry stonewort can flourish in hard-

water (i.e., water with high mineral content) and habitats of varying depth, light availability,

and sediment characteristics [4]. In addition, starry stonewort can grow densely, which may

lead to displacement of native aquatic plant species and could have consequences for habitat

quality [2]. Dense growth may also impair recreational activities such as swimming, fishing,

and boating [1,3]. Although populations of starry stonewort in their native distribution in

Europe and Japan have been declining [5–7], the species has shown great capacity to spread as

an aquatic invasive species in North America [3,8,9].

In 1978, starry stonewort was first recorded in North America in the St. Lawrence River,

where it was likely introduced through ballast water discharge from trans-Atlantic shipping

[10]. Marine currents could have played a role in starry stonewort’s dispersion, but this has

been not explored. Five years later, starry stonewort was reported for the first time in Michi-

gan, United States [1,10]. To date, starry stonewort has been reported in Indiana, New York,

Pennsylvania, Wisconsin, Vermont, Ontario, and, in August 2015, in Minnesota [3,8,11,12].

The introduction of starry stonewort to inland lakes has been speculated to be associated with

recreational boat activities from the movement of bulbils and alga fragments between different

lakes [1,3].

In light of limited knowledge about the potential spread and impacts of starry stonewort

in the Americas, improved knowledge of the species’ invasion ecology is a priority. Among

other efforts, identifying areas on the leading edge of the invasion range (e.g., Minnesota) with

suitable conditions for starry stonewort is a priority for targeting surveillance and control. Eco-

logical niche modeling can support these efforts. Ecological niche models correlate environ-

mental conditions with species’ occurrence records to identify suitable habitats where a species

can persist and increase in population size without the need of further immigration [13]. This

methodology has been used successfully with different taxa, scales, and ecosystems [13–15].

Furthermore, ecological niche models can be applied to forecast probable distributions of spe-

cies over longer time periods, e.g., under future climate scenarios [16–20]. Predicting areas

where starry stonewort could establish could inform surveillance efforts for early detection,

raise local awareness, and prioritize allocation of resources for control [21].

Local conditions can influence occurrence of starry stonewort in North America. For exam-

ple, in Lake Ontario, starry stonewort’s distribution is associated with high conductivity, short

distances to marinas, and low fetch [3]. In New York, Sleith et al. [1] found high pH and con-

ductivity to be associated with starry stonewort. However, invasive species’ occurrences are

defined not only by local-scale characteristics, but also by larger scales of environmental factors

that promote or limit spread over space and time [22]. Invasion of starry stonewort in the

Americas is likely an ongoing process that has not reached equilibrium, and more water bodies

are likely to be affected [8].

Recent reports of starry stonewort in Minnesota provide an opportunity to explore climatic

factors that may influence future expansion. Here, we have constructed a series of ecological

niche models to answer three main questions: (i) Which areas are vulnerable to starry stone-

wort invasion in Minnesota under present-day climate conditions? (ii) Which areas in Minne-

sota have suitable conditions for starry stonewort under future climate scenarios?, and (iii)
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How do decisions regarding the geographic region used in model calibration influence predic-

tions? We propose a protocol (Fig 1) to improve the workflow of ecological niche models for

forecasting species invasions.

Methods

The ecological niche modeling approach employed was based on the BAM framework [23],

which summarizes three components to define a species’ spatial range. The first component is

B, the presence of other organisms that promote (e.g., prey, symbionts) or restrict (e.g., depre-

dators, parasites) the distribution of the species in a region. The second component corre-

sponds to the set of abiotic environmental conditions, A, e.g., temperature, that are suitable for

a species to persist without need of immigration. The final component, M, corresponds to the

ability of the species to colonize biotically (B) and abiotically (A) suitable regions. Thus, the

spatial distribution of a species is defined as B \ A \M [23]. We focused on a broad-scale

exploration of A and M, as a preliminary assessment of the invasion potential of starry stone-

wort in terms of abiotic suitability and dispersal potential. We estimated A based on the associ-

ation of starry stonewort occurrences with bioclimatic variables across its range, and estimated

M based on using three regions for model calibration (Fig 1).

Occurrences

Occurrence records of starry stonewort were published in Escobar et al. [8], which used data

from digital repositories including the Global Biodiversity Information Facility (GBIF) [24]

and the Global Invasive Species Information Network [25] using the keywords “Nitellopsis
obtusa,” “Nitellopsis obtusa var. ulvoides,” and “Chara obtusa”. Occurrences from invaded

areas in the US were also derived from additional reports and publications [1,4,9,26]. Minne-

sota records were updated based on 2016 reports of new localities from the Minnesota Depart-

ment of Natural Resources (MDNR, http://www.dnr.state.mn.us/invasives/ais/infested.html).

Occurrences were individually inspected to assure credibility and geospatial accuracy. All

Minnesota, Wisconsin, and New York records have been confirmed by a Characeae expert

(Ken Karol, New York Botanical Garden). Michigan has the most records and not all have

been verified by experts. It is possible that reports from Michigan (and GBIF or other data-

bases) include false records. Unfortunately, this is the best information that is available at this

time. We chose to include all records based on the expectation that the error rate is relatively

low and that the invaded region most likely to include false records (Michigan) is in the center

of the species’ invaded range, such that false occurrences would be unlikely to have a strong

influence on niche estimation.

Oversampled areas, as a form of sampling bias, can generate model overfit [27]. To prevent

this, we calibrated present-day models using occurrences filtered to one-per-cell according to

the spatial resolution of cells in our environmental layers [28]. All the remaining occurrences

were used for modeling. From the initial pool of 2,260 occurrences, 84 single occurrences (i.e.,

occupied pixel cells) remained in the entire species’ range: 29 in the native range (34.5%; 2 in

Japan, 27 in Europe) and 55 in the invaded range in the US (65.5%; Fig 2).

Model calibration region M

The selection of M, the model calibration region, has a strong influence on ecological niche

model predictions [29]. For instance, considering only invasive populations can result in

incomplete information about the environmental preferences of the species [13], or be insuffi-

cient to characterize environmental tolerances [30]. Explicitly testing different extents of the

calibration region facilitates comparison of models and informs interpretation of results [31].
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Fig 1. Workflow of the modeling process used in this study. Occurrences were collected, cleaned, and employed to estimate three

model calibration regions (i.e., Mi, Mg, and Md). Present-day climatic variables were restricted to these model calibration regions and
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compared to future climatic conditions in Minnesota. Models were parametrized using present-day climates in the three model calibration

regions and the best models were projected to future climates in Minnesota using five climate models and four RCP scenarios.

https://doi.org/10.1371/journal.pone.0180930.g001

Fig 2. Model calibration region, M, explored in this study. Models were calibrated in three regions (red lines in A, B, and C) based on the distribution

of starry stonewort populations (green points). A. Model calibration region based on an invasive population approach focused on starry stonewort

populations in the invaded area of the United States and a high dispersal potential (i.e., 2,200 km), Mi. B. Model calibration region considering the entire

or global species’ range in the United States, Europe, and Japan and a high dispersal potential (i.e., 2,200 km), Mg. C. Model calibration region

considering the entire or global species’ range in the United States (left map), Europe (central map), and Japan (right map) and a reduced dispersal

potential (i.e., 700 km), Md.

https://doi.org/10.1371/journal.pone.0180930.g002
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Recent new records for starry stonewort in North America suggest that it may be expanding in

North America from east to west and from south to north [8]. As a proxy of the dispersal

potential of the species we used two distances for three M scenarios. First, we used the maxi-

mum distance between all known starry stonewort populations in the US (~2,200 km), as sug-

gested by the data available (i.e., MDNR surveillance: http://www.dnr.state.mn.us/invasives/

ais/infested.html) [23]. Considering that the species has been dispersing between distant lakes,

we assumed that spatial barriers could be overcome in the model calibration regions. We used

this distance as a buffer around starry stonewort occurrences to generate a model calibration

region for the invaded range in the US (Mi). This area corresponds to a model based on the

invasive populations.

Furthermore, to account for starry stonewort environmental preferences across its entire

range, we focused on two additional model calibration areas, including both native (Europe

and Japan) and invasive populations (US). One of these calibration areas was based on the

same maximum distance between all known starry stonewort populations in the US (~2,200

km; Mg) and the other was a proxy of the maximum distance between closer neighbors popula-

tions in the US (~700 km; Md), which in our case corresponded to the distance between the

last detection in Wisconsin and the first detection in Minnesota. We used these distances to

generate a buffer around occurrences across the entire species’ range (Fig 2). The Mi scenario

encompasses inland and coastal regions of central and eastern Canada and all states in the con-

tinental US except those in the far west: California, Nevada, Oregon, Washington, and western

portions of Arizona and Idaho. The Mg scenario encompasses all of those areas in addition to

Europe, parts of northwestern Africa and Asia (Japan, North and South Korea, and parts of

eastern China and Russia). The Md scenario includes the Upper Midwest region in the US and

southeastern Canada, portions of Southern, Northern, and Western Europe, and a small por-

tion of Eastern Europe, and also Japan except by the Hokkaido island (Fig 2). All M scenarios

included the area of interest for this study (Minnesota).

Environmental variables

As a proxy of A, we used the present-day Ecoclimate dataset (1950–1999) at 50-km spatial res-

olution [32]. Since starry stonewort occurs in both coastal and inland areas, we used climate

variables covering both regions. This climate dataset is derived from the Coupled Model Inter-

comparison Project (CMIP5) and combines climatic patterns from multiple general circula-

tion models from inland and marine ecosystems; thus, final climatic layers have global cover-

age. The role of oceanic dispersal in the invasion process of this species remains uncertain,

however, we assumed that marine dispersal could play a role and include climate conditions in

terrestrial and marine ecosytems in our model calibration regions. We used climatic variables

likely to influence starry stonewort’s macroscale distribution, selecting uncorrelated variables

based on correlation coefficients�0.80 (Table A in S1 File). Specifically, we used annual mean

temperature (˚C), mean diurnal temperature range (˚C), isothermality (%), temperature sea-

sonality (˚C), maximum temperature of the warmest month (˚C), mean temperature of the

wettest quarter (˚C), annual precipitation (mm/m2), and precipitation seasonality (%) [32].

Climate models are considerably variable, thus, adding more scenarios of future climate

would provide more information regarding the plausible variability in forecasts. Future cli-

matic conditions for the end of the 21st century (2080–2100) were obtained from Ecoclimate,

including four representative concentration pathways (RCPs; i.e., 2.6, 4.5, 6, and 8.5 W/m2;

here after numbers are shown without units) [32]. Each RCP scenario represents potential tra-

jectories of greenhouse gas emissions projected to the future, ranging from the most optimistic

(i.e., 2.6) to the worst-case scenario (i.e., 8.5) [32]. RCPs are the most updated climate scenarios

Climate change and starry stonewort invasion

PLOS ONE | https://doi.org/10.1371/journal.pone.0180930 July 13, 2017 6 / 24

http://www.dnr.state.mn.us/invasives/ais/infested.html
http://www.dnr.state.mn.us/invasives/ais/infested.html
https://doi.org/10.1371/journal.pone.0180930


from the Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report

(AR5), and replaced the SRES scenarios previously implemented by the IPCC AR4 [33]. The

four RCP scenarios were estimated based on five different future general circulation models

(GCM): CCSM, GISS, IPSL, MIROC, and MRI, allowing us to capture the variability in emis-

sions (i.e., RCP scenarios) and climate simulations (e.g., CCSM vs. MRI).

Non-analogous climate evaluation

We explored areas with non-analogous (novel) climatic conditions between present-day cli-

mate in the calibration regions vs. future climate in the projection region of Minnesota. This

resulted in a present vs. future comparison and calibration vs. projection regions. This analysis

was done using the extrapolation detection (Exdet) tool developed by Mesgaran et al. [34].

Exdet identifies non-analogous environments between calibration and projection regions

denoted as type I novelty [sensu 34]. Accounting for these non-analogous or novel environ-

ments enables a more confident interpretation of models [18,35,36].

Ecological niche models

Qiao et al. [37] proposed that multiple ecological niche modeling algorithms should be

employed to identify the model that best fits with the available data, the study system, and the

research question. We used Maxent to perform niche modeling because it enables the use of

different variable transformations (features), i.e., linear (L), quadratic (Q), product (P), thresh-

old (T), and hinge (H), and allows for different parameterizations (regularization values). In

addition, Maxent allows automatic truncation in novel climates to avoid predictions in non-

analogous environments.

Maxent is an occurrences-background algorithm, which estimates the most uniform proba-

ble distribution of the occurrences across a selected calibration region [13,38]. The back-

ground represents the summary of environmental conditions across the model calibration

region. Because we explored two calibration regions (invaded range and two areas from the

entire species’ range) the available background varied. We developed models based on 5,000

and also 10,000 background samples.

Here, we tested 20 different regularization coefficient values ranging from 0.1 to 2. The reg-

ularization coefficients regulate the complexity of the model, higher values penalize for com-

plexity and thus, produce simpler models (avoiding complex relationships between the data

and the variables) that, in general, tend to have larger predictions [39]. Because assessing dif-

ferent configurations is recommended [39–41], we explored models based on six feature com-

binations reported in the literature: L, LQ, H, LQH, LQHP, and LQHPT [40].

We used raw values from Maxent to assess model fit according to Akaike’s Information

Criterion values corrected for small sample size (AICc), which ranks models based on their

information content and complexity [42]; the model with the lowest AICc was selected (i.e,

ΔAICc = 0) as best reconciling the goals of fitting occurrences with environmental input data

and minimizing model complexity [41]. In addition, because low AICc does not represent the

ability of the model to predict independent data, we also assessed predictive performance

based on the full (AUCtotal) and mean (AUCmean) of the area under the curve of the receiver-

operating characteristic (AUC) and the difference between training and testing AUC and its

variability. These metrics assess if models can discriminate between occurrence and back-

ground points, with AUC values�0.5 consistent with randomly generated models unable to

differentiate between backgrounds and occurrences. Because AUC has been questioned

[43,44], we also used independent data to calculated mean omission rates (OR) from binary

models based on using 100% (OR100%) and 90% (OR90%) of training occurrences as thresholds.

Climate change and starry stonewort invasion
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These metrics enable the proportion of independent occurrences predicted incorrectly to be

quantified [40]. Evaluation of model predictions was performed using independent data

obtained via dividing the occurrences in two sets, one for model calibration and one for evalu-

ation. Calibration and evaluation data sets were developed based on four different data split-

ting configurations: (i) using one point at a time for model evaluation (i.e., Jackknife); (ii)

apportioning the occurrences into four groups, each with an off-diagonal set for calibration

and another for evaluation (i.e., block; as in [45]); (iii) selecting clusters of points and using

half for calibration and the other half for evaluation (i.e., Checkerboard1 [40]), and (iv) parti-

tioning the occurrences via cross-validation (k-fold; see [40]). Model evaluations were con-

ducted using the R package ENMeval [40].

Model projection to Minnesota

Once the best regularization coefficient, feature configuration, and number of background

points were determined for the calibration regions (Fig 2), the three selected models were pro-

jected to environmental conditions in Minnesota. Maxent allows strict model transference

during model projection via ‘extrapolation’ and ‘clamping’ being deactivated [36,46]. This

practice prevents unrealistic extrapolations of models into non-analogous (novel) environ-

ments that could be present in the projection region but absent from the calibration region

[46].

In all, to identify the best model by calibration region (Mi vs. Mg vs. Md), we explored 120

parameter configurations (20 regularization coefficients × 6 feature combinations), and two

background samples for each regions Mi and Mg: 5,000 and 10,000; and 10,000 for Md which

was not explored due to the reduced extent of this calibration area (Table B in S1 File). The

best models were projected to 20 future climate scenarios (4 RCP × 5 climate models). To

inform interpretation of forecasts, we also estimated uncertainty of all final models. We

parameterized final models based on our previous evaluations and generated surfaces of

uncertainty using 80% of occurrences in Maxent and performed 25 bootstrap replications

using random starting seeds. For final models, we selected the logistic output format in Maxent

with clamping and extrapolation deactivated. We used the standard deviation of replicates as

an indicator of uncertainty [38,47] (Fig 1) and developed a t-test (α = 0.05) to compare the

continuous suitability values of pixels among models in Minnesota.

Finally, we created an ensemble of models for different future climate scenarios in Minne-

sota. We averaged the final logistic models and calculated the standard deviations to identify

areas where models were consistent (low SD) or diverged (high SD). There is debate about use

of model ensembles, due to issues regarding interpretation of continuous units from different

algorithms (e.g., general linear models vs. regression trees vs. Maxent) (see [13]). Here, we

overcame such discrepancies by using the same suitability value (i.e., Maxent logistic), from

the same parameterization so that differences only reflected differences in future climate mod-

els for Minnesota. We also estimated the number of lakes in Minnesota comprising the lowest

and highest predictions of suitability using lake inventory data from the National Wetlands

Inventory of the US Fish & Wildlife Service [48].

Results

Selected regularization coefficients differed by model calibration region: a regularization coef-

ficient of 1.4 with LQHPT features provided the best fit (ΔAICc = 0) and good predictive per-

formance (AUCtotal = 0.98, AUCmean = 0.96–0.97, OR100% = 0.05–0.09, OR90% = 0.14–0.16) for

Mi, 0.2 + LQ for Mg (ΔAICc = 0, AUCtotal = 0.97, AUCmean = 0.95–0.96, OR100% = 0.01–0.04,

OR90% = 0.12–0.18), and 0.9 + LQ for Md (ΔAICc = 0, AUCtotal = 0.89, AUCmean = 0.85–0.88,

Climate change and starry stonewort invasion
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OR100% = 0.07–0.19, OR90% = 0.01–0.02; Table B in S1 File). Our evaluations revealed that

10,000 background points provided good model fit and performance for the three model cali-

bration regions explored. Logistic suitability values of starry stonewort models based on Mg

(mean = 0.40, sd = 0.13) vs. Mi (mean = 0.13, sd = 0.07) were significantly different (t = 1098,

df = 544500, p< 0.001), with higher suitability predicted when Mg was considered (Fig 3).

Logistic suitability values of starry stonewort models based on Md (mean = 0.30, sd = 0.13) vs.

Mi, and vs. Mg were also significantly different, with Md showing higher suitability than Mi

(t = 717.16, df = 551600, p< 0.001) but less than Mg (t = 315.76, df = 732220, p< 0.001; Fig 3).

Model uncertainty was higher in the model calibrated in Mi (Mi vs. Md: t = 20.10, df = 592650,

p< 0.001; sd Mi vs. Mg: t = 79.35, df = 536950, p< 0.001; Fig 3). In present-day models, we

found potential areas for starry stonewort distribution in southeast and central Minnesota and

also in the Minneapolis-St. Paul metro region. The portion of Minnesota where starry stone-

wort has been confirmed to date was predicted to have high suitability for the model calibrated

based on Mg and Md (Fig 3).

The Mi model based on the invasive population in the US predicted only a small area of

moderate suitability in central and southeastern Minnesota (Fig 3), while the model based on

the entire species’ range predicted a broad area of suitability across the state. Models from the

global range Mg containing all the occurrences produced predictions with lower uncertainty.

The Md model calibrated based on the entire species range but with reduced dispersal potential

predicted suitability resembling something between Mi and Mg (Fig 3). Prediction of starry

stonewort suitability from Md showed the highest uncertainty in western Minnesota.

Present-day climate across Mi, Mg, and Md showed non-analogous environments across

Minnesota under all RCP scenarios of the IPSL climatic model (Figs 4–6). All MRI emission

scenarios showed Minnesota having analogous climates. Other climate models and emission

scenarios showed different non-analogous climate configuration according to the M scenarios

employed (Figs 4–6). For example, Mi under present-day climatic conditions overlapped with

future climate conditions for all RCP scenarios in climate models GISS and MRI, RCP 2.6 and

4.5 in CCSM, and maintained environmental similarity in the northeastern part of Minnesota

in the MIROC model (Fig 4). This pattern was similar for Md (Fig 6) despite the lack of analo-

gous environments in MIROC RCP 8.5. Models calibrated based on Mg included analogous

environments except in the case of all RCP scenarios in the IPSL model and MIROC RCP 8.5,

which showed non-analogous environments in a small region in southwestern Minnesota (Fig

5). According to Exdet, non-analogous conditions for the IPSL model were driven mainly by

differences in mean diurnal range, while novel climates in the MIROC RCP 2.6, 4.5, and 8.5

and CCSM RCP 6 and 8.5 were driven by extreme values of maximum temperature of the

warmest month (Figs 4–6). Novel climates in MIROC RCP 6 model were explained by the

maximum temperature of the warmest month and by the mean temperature of wettest

quarter.

Models calibrated based on Mi and Md produced predictions with high uncertainties in

Minnesota for all RCP scenarios (Figs 7 and 8). High suitability was predicted for Mi and Md

in scenarios CCSM RCP 2.6 and 4.5, MRI RCP 4.5, 6, and 8.5, and for Md GISS RCP 6. Addi-

tionally, based on Mi and Md, models did not predict suitability under the IPSL climate model

or predicted moderate suitability in small areas under the MIROC climate model (Figs 7 and

8), due to the absence of analogous environments (Figs 4 and 6).

The models from Mg transferred to future climate predicted an expansion of suitable areas

under all GISS scenarios, with reduced suitability for future climate according to CCSM, IPSL,

and MIROC (Fig 9). High variability was found for CCSM 2.6 and 8.5, GISS RCP 6, and all

MRI scenarios. Some future climate scenarios indicated lack of suitability for starry stonewort

throughout Minnesota (Fig 9). Suitability was not predicted for all IPSL scenarios due to non-

Climate change and starry stonewort invasion
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Fig 3. Ecological niche model transference to Minnesota under present-day climate. Ecological niche

model predictions based on model calibration region in the invaded range with high dispersal (Mi; top), entire

species’ range with high dispersal (Mg; mid), and entire species’ range with reduced dispersal (Md; bottom)

projected to Minnesota to identify areas with high (red) or low (blue) environmental suitability (left) and high

(pink) or low (light blue) model uncertainty (right).

https://doi.org/10.1371/journal.pone.0180930.g003
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Fig 4. Environmental similarity comparison between the calibration Mi and the projection region of

Minnesota. Exdet tool identified analogous climates between present-day climate in the calibration region from the

Climate change and starry stonewort invasion
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analogous climates; while MIROC RCP 8.5 and CCSM RCP 8.5 showed unsuitability in analo-

gous environmental conditions in all M scenarios. In general, climatic suitability is predicted

to decrease under future climate conditions relative to present-day conditions (Fig 3 vs. Fig

10). The model ensemble showed a lack of agreement in predicted suitability among M calibra-

tion areas and RCP scenarios, with suitability values ranging from 0.01 to 0.12 for Mi, 0.05 to

0.28 for Mg, and from 0.06 to 0.30 for Md (Fig 10). Areas with high values of suitability were

also areas with high uncertainty in the model ensemble (Fig 10). In general, climatic suitability

is predicted to decrease in the number of lakes of Minnesota under future climate conditions

relative to present-day conditions except for the scenario RCP 2.6 from the climatic model

CCSM and RCP 8.5 from MRI.

Discussion

Model predictions

We used a BAM ecological niche modeling framework to predict present-day and future cli-

matic suitability throughout Minnesota for the aquatic invasive species starry stonewort.

Under most future climate scenarios, the available range is predicted to shrink relative to pres-

ent-day conditions. Based on the data available and the assumption of niche conservatism

[49,50], all future climatic models under all RCP scenarios showed a decrease in suitable range

relative to present-day conditions, with the exception of future climatic models: CCSM 2.6 and

4.5, and MRI RCP 4.5, 6, and 8.5 for Mi, GISS RCP 6 for Mg, and CCSM 2.6 and MRI 8.5 for

Md, which showed increased areas of suitability with plausible range shifts. All these predic-

tions, however, showed considerable uncertainty (Figs 7–9).

It is possible that our findings underestimate the potential invasiveness of starry stonewort

by not capturing the full extent of its climatic tolerance [23]. Escobar et al. [8] recently de-

scribed environmental tolerances of starry stonewort in its invaded and native ranges and

found that invasion was associated with a shift in its realized niche, suggesting niche expan-

sion, i.e., there were environmental conditions occupied by starry stonewort in the invaded

range that lacked analogues in the native range [51]. This suggests that invasion potential may

exceed what would be anticipated based on past performance alone, and starry stonewort may

be able to expand into previously unoccupied environmental space [49,51]. Models could also

be underestimating invasion due to overfitting from oversampled areas (i.e., sampling bias)

and spatial autocorrelation in climatic variables; however, we minimized this risk by resam-

pling occurrences to one per pixel and using coarse-resolution climatic variables, including

data from remotely sensed imagery, to counter high spatial lag associated with data derived

solely from climate stations [32,52,53].

The consensus areas of suitability across models (Fig 10) showed a pattern of reduced suit-

ability across all M regions, suggesting a potential decline of the starry stonewort under warm-

ing climates in terms of the climates where the species is found to date. Model ensembles

highlight areas of agreement across predictions, but their interpretation requires caution [17].

The lack of consensus of suitable areas for starry stonewort under future climate in Minnesota

reflects the diversity of possible trajectories of future climate (Figs 7–9).

We note that our findings are based on estimated climatic tolerances and a proxy of estab-

lishment [23]. Numerous other factors, such as water chemistry, dispersal limitation, and

invaded range and future climate scenarios in the projection region of Minnesota. Areas with analogous (green) and

non-analogous environments in Minnesota (grey) were identified for five future climate models (i.e., CCSM, GISS,

IPSL, MIROC, MRI) and four RCP scenarios of CO2 emissions (i.e., 2.6, 4.5, 6, and 8.5).

https://doi.org/10.1371/journal.pone.0180930.g004
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Fig 5. Environmental similarity comparison between the calibration Mg and the projection region of

Minnesota. Legend as in Fig 3.

https://doi.org/10.1371/journal.pone.0180930.g005
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Fig 6. Environmental similarity comparison between the calibration Md and the projection region of

Minnesota. Legend as in Fig 3.

https://doi.org/10.1371/journal.pone.0180930.g006
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agonistic interactions with resident biota, could limit starry stonewort expansion. However, a

recent study of macrophyte communities in invaded lakes suggested plausible dominance of

starry stonewort, with native species richness decreasing as starry stonewort increases in bio-

mass [2]. These fine-scale, potentially complex and interacting factors cannot be accounted for

in climate-based models, experiments would be needed to test the influence of these factors on

starry stonewort population dynamics. Future research should assess how finer-scale abiotic

variables (e.g., pH, conductivity, water clarity), biotic interactions, dispersal potential (via

boater movement or natural water connectivity), and landscape factors (e.g., densities of roads

and boat accesses) influence lake-level risk of starry stonewort invasion. Emergence of sexually

reproductive populations could add new and longer-distance dispersal vectors due to small

oospores that could potentially be spread by waterbirds or survive overland transport longer

than bulbils [21].

Fig 7. Ecological niche models of starry stonewort calibrated in Mi and projected to future climate scenarios in Minnesota. Ecological niche model

predictions based on model calibration region Mi projected to Minnesota. Areas with high (red) or low (blue) environmental suitability (Suitability, left) and

high (pink) or low (light blue) model uncertainty (Standard deviation, right) were identified for five future climate models (i.e., CCSM, GISS, IPSL, MIROC,

MRI) and four RCP scenarios of CO2 emissions (i.e., 2.6, 4.5, 6, and 8.5).

https://doi.org/10.1371/journal.pone.0180930.g007
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Environmental variables

The environmental variables derived from the Ecoclimate repository are a promising alterna-

tive for modeling species distributed across inland and coastal/marine ecosystems [32], pro-

viding robust data on climatic variability needed for ecological niche models [54]. The 50-km

spatial resolution of Ecoclimate variables mitigate the high spatial lag of finer-resolution cli-

matic layers [52,53], which can produce flawed estimates due to high spatial autocorrelation

from statistical downscaling [32,53]. We argue that during exploratory analyses, coarse-scale

variables are useful for identifying plausible constraints for species establishment. Subsequent

work can then incorporate finer-scale environmental variables (derived from remote sensing

or habitat data) to complement climate-based models. Additionally, we developed analyses

incorporating five future climate models: CCSM, GISS, IPSL, MIROC, and MRI, and four

RCP emission scenarios: 2.6, 4.5, 6, 8.5. This allowed us to investigate a broader range of plau-

sible climate scenarios. Ecological niche modeling of species invasions under future climates

Fig 8. Ecological niche models of starry stonewort calibrated in Md and projected to future climate scenarios in Minnesota. Ecological niche model

predictions based on model calibration region Md projected to Minnesota. Legend as in Fig 7.

https://doi.org/10.1371/journal.pone.0180930.g008
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should incorporate alternative climate models and emission scenarios to reflect the uncertainty

in future conditions.

The calibration region M

In agreement with previous studies using virtual species [29], our models based on empirical

data suggest that a careless definition of the calibration region, M, may produce flawed results

[23]. Restricting the model calibration region only to the invaded region, Mi, in present-day

climate (Fig 2), narrowed geographic predictions to southeastern Minnesota—all actual oc-

currences to date are outside of this region—as a result of the incomplete information pro-

vided to the algorithm (Fig 3). In contrast, considering the entire species’ range for the two

calibration regions Mg and Md (Fig 2) included portions of central and central-north Minne-

sota where starry stonewort has known occurrences (Fig 3). We found that increasing the

model calibration area generated an increase in AUC values, but from a practical perspective,

Fig 9. Ecological niche models of starry stonewort calibrated in Mg and projected to future climate scenarios in Minnesota. Ecological niche model

predictions based on model calibration region Mg projected to Minnesota. Legend as in Fig 7.

https://doi.org/10.1371/journal.pone.0180930.g009
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Fig 10. Starry stonewort future climate models ensemble. Model ensemble expressed as the average of

continuous models in logistic format (left, ‘Suitability’), showing areas with high (red) or low (blue) suitability

Climate change and starry stonewort invasion
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accounting for environmental conditions available in the entire range produced forecasts that

were more reliable and more precautionary [30]; this suggests that AUC may not accurately

reflect model performance due to high sensitivity of this metric to the extent of the model cali-

bration region [29].

From a theoretical perspective, niche estimations should be guided by modern ecological

niche theory [23]. According to Hutchinson [13,55], ecological niches occur in multidimen-

sional environmental space, and species may not occupy all suitable abiotic environments (A)

due solely to limiting biotic interactions (B; e.g., competition) (Fig 11 top). However, Soberón

and Peterson [23] propose that Hutchinson’s ideas were incomplete and that, in addition to B,

a species can also be limited by its dispersal potential (M) (Fig 11 bottom). They propose that

species rarely occupy their entire environmental potential and that the Hutchinsonian frame-

work needs to be expanded. The BAM framework proposes that for a realistic A estimation for

an invasive species, studies should include delimitations of M allowing a representative charac-

terization of the dispersal potential of the species [23]. In other words, models aiming to esti-

mate a good proxy of A should include all the areas where the species occurs, including the full

native and invaded ranges. Thus, we stress that ecological niche modeling to forecast current

and future biological invasions are dependent upon M (Fig 10 bottom). Ecological niche mod-

els calibrated in only a portion of the species’ range or under a single M scenario may underes-

timate invasive potential (Fig 3). In this vein, our estimation of dispersal potential based on

distance between populations in the invaded range may be confounded by search effort and

may not reflect the actual directionality of spread. Genetic/genomic analyses could be used to

reconstruct dispersal potential, invasion pathways, and directionality.

The extent of the calibration region was also crucial to establish the presence or absence of

novel environments between calibration and projection regions, and between present-day and

future climates [34,46]. Models Mi calibrated from the invaded range only, and models Md

calibrated based on a small dispersal potential (Fig 2), showed high levels of truncation of pre-

diction in non-analogous novel climatic conditions across Minnesota, limiting our ability to

project models to future scenarios (Figs 4 and 6). Conversely, Mg models from the entire spe-

cies range with a hypothetical high dispersal identified suitable areas for starry stonewort in

Minnesota under present-day and most future climate scenarios (Figs 5 and 9). This provides

additional evidence that the calibration region extent plays a key role in ecological niche

model projections for species invasions. Thus, model calibration regions should include the

full distribution of the studied species under different M scenarios to capture the fullest possi-

ble set of environmental determinants of physiological tolerance of the organism, providing a

firmer biological foundation for calibration region selection [13,31]. We urge researchers and

reviewers to put special attention to the justification and biological support of the M area

selected for model calibration in past and future ecological niche modeling studies.

Maxent and model evaluation

Current literature advocates Maxent for niche modeling due to its accessibility, user-friendly

interface, and supporting literature [39]. However, the potential of Maxent to overestimate or

from all the RCP emission scenarios in comparison with the maximum range of suitability of climatic models

projected to Minnesota in present environmental conditions (i.e., from the lowest [0.09] to the highest [0.69]

suitability). Lack of agreement was estimated from the standard deviation of the final models (right, ‘Standard

deviation’) and shows areas of high (pink) or low (light blue) disagreement among models. Top: Models

calibrated in Mi and projected to future climate scenarios in Minnesota. Mid: Models calibrated in Mg and

projected to future climate scenarios in Minnesota. Bottom: Models calibrated in Md and projected to future

climate scenarios in Minnesota.

https://doi.org/10.1371/journal.pone.0180930.g010
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Fig 11. Conceptual framework used for interpretation of predictions. Top: The “Hutchinson Fallacy”

expressed as the intersect of abiotic (A; dashed line) and biotic factors (B; dotted line) showing the
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overfit predictions to the data available must be considered [18,27,38,39,41]. Maxent must be

fitted for each study case considering the natural history of the species, the data available, and

the assumptions involved. The results from our approach to control the extent of the calibra-

tion region, which included use of regularization coefficients, information-theory model selec-

tion, strict model evaluation, and strict model transference, support the contention that using

the default parameterizations of Maxent, while convenient, is an inappropriate approach that

can lead to inaccurate conclusions [29,41,46]. Thus, each modeling effort should include

detailed individualized parameter selection, and model results should be critically assessed to

determine if they are biologically sound, avoiding reliance on single model estimates [37].

Although predicted suitability from our present-day models ranged from minimal to broad

across Minnesota (Fig 3), models with the two different calibration regions performed well in

terms of omission rates and AUC values [40]. The heterogeneous suitability predicted under

the two configurations reflects the sensitivity of ecological niche models to experimental

design decisions (Fig 2) [13]; therefore, we propose that uncertainty estimation must be

included as an essential component of ecological niche model estimations.

Conclusions

Starry stonewort is predicted to expand its current geographic range into novel areas across

Minnesota under present-day climate conditions. Under future climate conditions, we esti-

mate a reduction in suitability for the species. Our models are a step toward the development

of management strategies to prevent and mitigate the spread of this species on the leading

edge of its invasion. It is crucial to develop strategic interventions that target the role of human

activities in starry stonewort spread. Further, our results suggest that sound forecasts require

rigorous model design and evaluations to improve their reliability.
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