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Abstract 
This study investigated the effectiveness of using high resolu-
tion data to map wetlands in three ecoregions in Minnesota. 
High resolution data included multispectral leaf-off aerial 
imagery and lidar elevation data. These data were integrated 
using an Object-Based Image Analysis (OBIA) approach. 
Results for each study area were compared against field and 
image interpreted reference data using error matrices, accu-
racy estimates, and the kappa statistic. Producer’s and user’s 
accuracies were in the range of 92 to 96 percent and 91 to 
96 percent, respectively, and overall accuracies ranged from 
96-98 percent for wetlands larger than 0.20 ha (0.5 acres). The 
results of this study may allow for increased accuracy of map-
ping wetlands efforts over traditional remote sensing methods. 

Introduction
Wetlands are naturally dynamic systems of important value 
to the environment and society. The US Army Corps of 
Engineers (USACE) in cooperation with the US Environmental 
Protection Agency (EPA) have defined wetlands, incorporating 
technical and policy considerations, as “…those areas that 
are inundated or saturated by surface or ground water at a 
frequency and duration to support and under normal cir-
cumstances do support, a prevalence of vegetation typically 
adapted for life in saturated soil conditions” (Federal Register, 
1980 and 1982). Wetlands can reduce some of the negative 
effects of flooding and recharge groundwater by gradually re-
leasing flood water and snow melt. Wetlands offer habitat that 
supports wildlife and fishing activities. Wetlands also provide 
ecosystem services, including educational, aesthetic, and eco-
nomic opportunities. For example, intact freshwater marshes 
in Canada have a total economic value of approximately 5,800 
USD per hectare compared to 2,400 USD when those lands are 
drained and used for agriculture (Millennium Ecosystem As-
sessment, 2005; Turner et al., 2000).

Due to wetland loss and degradation, many of the preced-
ing benefits have been reduced and are increasingly impacted. 
About 215 million acres of wetlands existed in the United 
States at the time of European settlement. However, by the mid-
1970s, only 99 million acres of the original wetlands remained. 
Many of the lost wetlands were drained and are currently used 
for agriculture, resource extraction, urbanization, and other 
commercial purposes (Dahl and Johnson, 1991; Frayer et al., 
1983; Stedman and Dahl, 2008). Minnesota is not an excep-
tion to this large national wetland loss. Nearly half of Minne-
sota’s original wetlands were lost due to extensive agricultural 
drainage and urban development. According to the Minnesota 
Pollution Control Agency (MPCA) (2006), many original natural 

wetlands were changed into local storm-water ponds to make 
additional land available for urban development. 

Currently in Minnesota only a few cities have updated wet-
land inventories. For the rest of Minnesota the only wetland in-
ventory available is the National Wetlands Inventory (NWI). The 
Minnesota NWI maps were completed in the late 1980s using 
aerial photos (some black and white) collected between 1979 
and 1988 (LMIC, 2007). Several 7.5’ quadrangles in northwest-
ern Minnesota and a much larger area in northeastern Minneso-
ta were mapped based on 1970s 1:80 000 scale black-and-white 
photos (MPCA, 2006). Changes in the landscape have occurred 
which limit the use of the NWI maps due to the outdated data 
and techniques used to create them. Thus, there is a need to 
update wetland inventories with accurate boundaries and 
improved delineation of smaller wetlands. An updated wetland 
inventory would provide information that could be used to 
make accurate decisions for the conservation, protection, 
and restoration of wetlands. Although a Minnesota statewide 
update is underway, it is a heavily image interpretation-based 
project that is not expected to be completed until 2020. Thus, 
more automated techniques may be useful in the near term.

A fast and effective method to identify accurate wetland 
boundaries involves the use of remote sensing data and 
techniques (Butera, 1983; Corcoran et al., 2011; Knight et al., 
2013). To the present time, the majority of wetland mapping 
efforts using remote sensing data and techniques has been 
focused on evaluating traditional pixel-methods with medium 
to coarse resolution data. In many cases, the use of remote 
sensing for wetland mapping has resulted in low accuracy 
estimates, often due to mixed pixels and insufficient spectral 
resolution (Grenier et al., 2007; Fournier et al., 2007; Lunetta 
and Balogh, 1999; Ozesmi and Bauer, 2002). Integration of 
high resolution optical and elevation data has been shown 
to reduce the mixed pixel problem (Frohn et al., 2009; Maxa 
and Bolstad, 2009). Some studies have integrated optical 
and elevation data to map wetlands using traditional pixel-
based methods. However, their accuracy results were low for 
wetland classification due to the use of low to medium spatial 
resolution data and pixel-based techniques (Baker et al., 2006; 
Ozesmi and Bauer, 2002). 

An object-based approach may be a better option to inte-
grate high resolution data and overcome some limitations, 
including the mixed pixel problem and salt-and-pepper effect 
of traditional pixel-based techniques (Myint et al., 2011; Zhou 
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and Troy, 2008). Object Based Image Analysis (OBIA) segmen-
tation and classification techniques have been considered as 
an alternative to pixel-based methods since the late-1990s 
because of their ability to include contextual information, 
human knowledge, and experience to interpret the objects of 
interest (Baatz et al., 2008; Blaschke, 2003; Blaschke, 2010). 
The foundation of the OBIA approach is an initial image seg-
mentation that uses pixel-based features to create statistically 
homogeneous image objects (Benz et al., 2004; Fournier et al., 
2007). These homogenous objects, also called geo-objects or 
segments, can be classified into land-cover classes using attri-
butes of the objects such as spectral, textural, contextual and 
shape characteristics (Burnett and Blaschke, 2003; Bruzzone 
and Carlin, 2006; Hay and Castilla, 2008). The OBIA approach 
can be used to generate vector polygons from the classification 
and directly incorporate them into a geographic information 
system (GIS) (Castilla, et al., 2008; O’Neil-Dunne et al., 2012).

The aim of this research was to investigate the effective-
ness of using high resolution leaf-off aerial imagery and lidar 
data to map wetlands in three different ecoregion study areas 
in Minnesota. 

Study Area and Data
Study Area Description
Due to the complexity and variety of wetlands in Minnesota, 
we selected three study areas to evaluate the OBIA approach to 
map wetlands. The first study area was the Minnesota River 
Headwaters watershed located in the Northern Glaciated 
Plains ecoregion and within Big Stone, Traverse, and Stevens 
counties (Figure 1). This watershed is 717 km² in size and the 
main land use is agriculture. A large portion of the watershed 
is characterized by a rolling prairie of till plain, clay loam soils 
and a combination of poorly and well drained soils (Minnesota 

Department of Natural Resources, 2006). The average precipi-
tation is 640 mm/year and 360 mm during the growing season 
(May to September). Many shallow lakes and wetlands are 
common features of the landscape in this watershed. These 
lakes and wetlands are perfect settings to support and nurture 
wildlife habitat and viewing opportunities for a variety of bird 
and duck species (Midwest Community Planning LLC, 2012). 

The second study area was the Swan Lake watershed 
located in the Western Corn Belt Plains ecoregion and within 
Nicollet County (Figure 1). It has an area of 204 km², and the 
main land use is agriculture. A large portion of the watershed 
consists of glacial till plain with level to gently rolling prairie 
uplands. This area is characterized by clay loam soils and 
fertile deep soils with a high level of organic matter (Min-
nesota Department of Natural Resources, 2006). The average 
precipitation is 740 mm/year and 460 mm during the growing 
season (May to September). This watershed has one of the 
biggest prairie pothole marshes in the United States, provid-
ing habitat for different species, storm water retention and 
education opportunities (Nicollet County, 2008). 

The third study area is the Thompson Reservoir St. Louis 
River watershed located in the Northern Lakes and Forest, 
between St. Louis and Carlton counties (Figure 1). It is 53 km² 
in size and the main land use is forested land. A large portion 
of the watershed is characterized by drumlins covered with 
forest, poorly drained wetland depressions, and fine sandy 
loam soils. The average precipitation is 710 mm/year and 
440 mm during the growing season (May to September). 

Data Acquisition
We used two data sources to investigate the effectiveness of 
integrating multiple datasets to map wetlands in the three 
study areas. These sources included lidar data and orthorecti-
fied digital aerial photography (0.5 m). The half-meter ortho-
rectified imagery used for Swan Lake and the Minnesota River 

Figure 1. Location of the three watershed study areas in the state of Minnesota, USA. 
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Headwaters was collected by Surdex Corporation between 12 
April 2011 and 16 May 2011. This imagery was provided by 
the vendor to the Minnesota Department of Natural Resources 
(MDNR) as a radiometric/orthorectified ready product. The 
Minnesota Department of Transportation (MnDOT) separately 
tested the horizontal positional accuracy of this imagery and 
obtained a root mean square error (RMSE) of 0.819 m with an 
NSSDA of 1.418 m (95 percent confidence level). This imag-
ery was acquired with an Intergraph DMC® (digital mapping 
camera) from an altitude of about 3,000 m, capturing four 
multispectral bands (red, green, blue, and near infrared). The 
half-meter orthorectified imagery used for the Thompson Res-
ervoir St. Louis River watershed was collected by Keystone 
Aerial Surveys, Inc. in May 2009. This imagery was provided 
by the vendor to the DNR as a radiometric/orthorectified ready 
product. The DNR separately tested the horizontal positional 
accuracy of this imagery and obtained an RMSE of 2 m with 
an NSSDA of 3.5 m (95 percent confidence level). This imag-
ery was acquired with a Vexcel UltraCamX® camera from an 
altitude of about 7,300 m, capturing four multispectral bands 
(red, green, blue, and near infrared). 

The lidar data (point cloud data, lidar DEM, and lidar hy-
brid intensity) used for the Minnesota River Headwaters study 
area was obtained through the International Water Institute 
(IWI) lidar download portal. The lidar data for the Minnesota 
River Headwaters was collected in the spring of 2010 during 
leaf-off conditions by Fugro Horizons, Inc. The data were col-
lected with a Leica sensor ALS50-II MPiA® (Multiple Pulses 
in Air), at an altitude of 2,400 m above mean terrain (AMT), 
and with an average post spacing of 1.35m. The horizontal 
accuracy for these data was of ±1 m (95 percent confidence 
level), and a vertical accuracy RMSE of 15.0 cm. For this study 
area, we used the 1 m DEM and hybrid intensity images pro-
vided by the IWI. The DEM was produced by interpolating the 
bare earth LAS files delivered by the vendor using the “Raster 
to ASCII” command in ArcGIS® 10.1. The hybrid intensity 
layers were created from lidar intensity and raw lidar/hill-
shade by the vendor. Hybrid intensity images were created 
by interpolating the infrared reflectance value attributed for 
each point. The lidar data (point cloud data, lidar DEM and 
lidar intensity) used for Swan Lake and Thompson Reservoir 
St. Louis River watershed were acquired from the Minnesota 
Geospatial Information Office (MnGeo) FTP site. 

The lidar data for the Swan Lake study area was collected 
between 26 April and 28 April 2010 by AeroMetric, Inc. The 
data were collected using a multiple fixed wing aircraft lidar 
system at an altitude of 1,700 m AMT, and an average post 
spacing of 1.3 m. The horizontal accuracy for these data was of 
±0.3 m (95 percent confidence level), and a vertical accuracy 
RMSE of 10.0 cm. The lidar data collected for the Thompson 
Reservoir St. Louis River study area was collected between 
03 May and 05 May 2011 by Woolpert, Inc. The data were 
collected at an altitude of about 2,400 m AMT with an average 
post spacing of 1.5 m. The horizontal accuracy for these data 
was ±1.2 m (95 percent confidence level), and vertical accura-
cy RMSE was 5 cm. In this study we used the 1 m DEM provided 
by the Minnesota DNR, which produced the DEM by extracting 
bare earth points from the point cloud data. The DEM was also 
hydro flattened using the edge of the water breaklines.

Methods
We mapped wetlands by using an OBIA approach through the 
creation of rule sets for each study area. We used the Cogni-
tion Network Language (CNL) within the software package 
Definiens eCognition® Developer version 8.8.0 to develop 
the three rule sets. The eCognition Server 64-bit package was 
used to execute in a batch mode all the tile stacks for each 
study area. The first subsection of the methods used in this 

study describes the data preparation performed for each study 
area. The next subsection explains the design of the rule set 
created for each study area. Finally, the last subsection ad-
dresses the accuracy assessment procedures used to evaluate 
results in each study area. 

Data Preparation
Before the creation of the three rule set, we performed four 
data preparation steps needed prior to develop the OBIA ap-
proach. First, we generated several raster layers from the lidar 
point cloud data and DEM. The raster layers included: a digital 
surface model (DSM), a lidar intensity layer, the compound 
topographic index (CTI). These raster layers were chosen 
because of their topographic information, which is useful to 
differentiate wetland from other cover classes. We used Quick 
Terrain (QT) Modeler® version 7.1.6 to generate the 3 m DSM 
raster layer using the point cloud data for each study area. 
The natural-neighbor interpolation algorithm method, the 
maximum Z value of the first return for all the classes were 
used to create the DSM layer. We exported the DSM into a raster 
GeoTIFF file with 3 m spatial resolution. 

The lidar intensity images for Swan Lake and the Thomp-
son Reservoir St. Louis River study areas were also generated 
in QT Modeler with the grid statistic tool, using the mean 
intensity values of all the lidar returns. We exported the 
intensity grid layer into a raster GeoTIFF file with 3 m spatial 
resolution. The lidar intensity image for the Minnesota River 
Headwaters study area was obtained directly from the IWI 
download website. 

The CTI layers for each study area were created using the 
DEM layer for each study area. We used the following formula 
to compute the CTI given by Beven and Kirkby (1979) study: 
CTI = ln [(α)/ (tan (β)]. In this equation α represents the local 
upslope area draining through each cell, and β represents the 
local slope gradient. The CTI represents the potential distribu-
tion of the water movement and water accumulation across 
the landscape (Moore et al., 1991). The CTI is used to identify 
parts of the landscape where sufficient wetness could allow 
for the formation of wetlands (Rodhe and Seibert, 1999). 

Figure 2 shows a map of the Minnesota River-Headwaters 
study area representing CTI values, where higher CTI values 
represent water accumulation (potential wetland formation), 
and lower CTI values represent dryness or steep places where 
water would not likely accumulate based on topography. 
The choice of the flow direction algorithm used to calculate 
α (local upslope area) can affect the accuracy of the CTI. For 
example, single flow direction algorithms allow flow to pass 
only to one neighboring downslope cell while multiple flow 
direction algorithms allow water to flow into multiple neigh-
boring cells. This multidirectional flow effect creates more 
realistic water flow patterns in different topographic settings, 
including convex and concave hillslopes (Erskine et al., 2006; 
Gruber and Peckham, 2008; Wilson et al., 2008). Thus, in this 
study we used the triangular multiple flow direction algo-
rithm proposed by Seibert and McGlynn (2007) to compute 
the local upslope area. We used the Whitebox open-source 
software version 1.0.7 to calculate the contributing area (lo-
cal upslope area) and local slope layers needed for the CTI. 
The slope layer was modified by adding a minimum value of 
0.0001 to avoid division by zero for CTI calculations. 

It is important to clarify that the DEM for the Swan Lake 
and Thompson Reservoir St. Louis River areas was obtained 
directly as a raster layer, already mosaicked, from the MnGeo 
FTP site. However, for the Minnesota River Headwaters areas, 
we had to mosaic each DEM and hybrid intensity tile con-
tained within this area. Mosaicking was necessary because 
these data were provided by the IWI in raster tiles of 2,000 
m by 2,000 m. We used ERDAS Image® 2011 to mosaic and 
exported the DEM and intensity layers as GeoTIFF files. We also 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 May 2014 	 441



exported the DEM for the Swan Lakes and the Thompson Res-
ervoir St. Louis River study areas to GeoTIFF format. 

Second, after calculating all the lidar layers, we used the 
MosaicPro tool from the ERDAS Image 2011 software to mosaic 
the orthorectified aerial imagery for each study area.

Third, once all the previous lidar and imagery layers were 
prepared, we used a watershed boundary shapefile layer for 
each study area to subset all the raster layers in ERDAS Image 
version 2011. The watershed boundaries were obtained from 
the Minnesota Department of Natural Resources (DNR). Finally, 
we produced a tile generation for each study area. The tile gen-
eration was carried out in ERDAS Image version 2011, using 
the Dice tool with the following parameters: tile size of 3,000 
m × 3,000 m and an overlap of 300 m between adjacent tiles 
on all four sides. Each study area had a tile stack of four lidar 
product layers (DEM, DSM, CTI, and Intensity) and four bands 
of imagery layers (Figure 3). The following tile stacks were 
created: 224 for the Minnesota River Headwaters, 49 for Swan 
Lake, and 20 for the Thompson Reservoir St. Louis River.

Rule set Creation and Classification
Before the creation of rule sets for each study area, we devel-
oped a customized import routine in eCognition developer 
software to import all the tile stacks of layers for each study 
area. Each rule set was developed through a trial and error 
process using small subset areas (500 × 500 pixels). We used 
a divide and conquer approach (Quinlan, 1990; O’Neil-Dunne 
et al., 2012), which is a multiscale iterative method where 
objects vary in size, shape, and spectral attributes. While the 
two major steps performed in the rule set development were 
the creation of objects and the classification of those objects, 
further steps were required for the classification of each object 
to be assigned to the class of interest (wetland class versus 
non-wetland class). Each rule set consisted of four main com-
ponents: (a) image processing, (b) segmentation and classifica-
tion, (c) export operation, and (d) cleanup operation. 

In the image processing phase, we carried out the follow-
ing tasks: calculation of the normalized Digital Surface Model 
(nDSM) = DSM − DEM, and application of a median filter to the 
nDSM and intensity layers, and computation of the Green Ratio 
Vegetation Index (GRVI) using the eCognition developer soft-
ware tools for object features. The GRVI was computed using 

the NIR and green bands of the aerial imagery as the ratio of 
the NIR divided by the green band (Sripada et al., 2006).

This index was chosen for two reasons: first, it is known 
that vegetation indices such as the Normalized Difference 
Vegetation Index (NDVI) can be useful for discriminating wet-
lands from other upland classes (Hodgson et al., 1987, Wright 
and Gallant, 2007). Second, after testing several vegetation 
indices including the NDVI, the Green Normalized Difference 
Vegetation Index (GNDVI), the Difference Vegetation Index 
(DVI), and the GRVI to determine which index would be more 
helpful in differentiating wetland features from non-wetland 
features. Our unpublished results indicated that the GRVI 
was more accurate than the other indices to differentiate and 
exclude areas that were topographically suitable for wetlands 
but contain impervious cover (non-vegetated).

In the segmentation and classification phase, we performed 
the following tasks: we created preliminary objects using the 
multi-resolution segmentation algorithm (Baatz and Schape, 
2000) with the following parameter values: scale 30, shape 
0.3, and compactness 0.5. A weight value of 1 was given to 
the three visible optical bands and a weight value of 2 to 
the NIR band. The scale value of 30 was chosen because we 
wanted medium size preliminary objects. The shape value of 
0.3 was chosen because more weight was given to the influ-
ence of color on the segmentation process. The NIR band was 
given a higher weight value because of its ability to spectrally 
separate potential non-water objects from water objects. 

After creating the preliminary objects, the second step was 
to refine those objects by applying a spectral difference seg-
mentation algorithm, based on a maximum spectral difference 
value. The spectral difference algorithm merges neighboring 
objects based on a maximum spectral difference value param-
eter (Definiens Imaging, 2009). A value of 14 was chosen as 
the maximum spectral difference parameter for this difference 
segmentation. This value was chosen after visually assessing 
different values.

The third step was to classify the preliminary objects into 
temporary classes, including wet versus dry, bright versus 
dark, and short versus tall. We used the following attributes 
of each dataset to create the temporary classes: min, max, and 
mean threshold values of the CTI, nDSM, intensity, NIR band, 
imagery brightness, and GRVI. 

Figure 2. CTI index for Minnesota River-Headwaters study area.
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algorithm with the following parameters: a minimum threshold 
value of 2, a max threshold value of 5, and a step size of 1. Pre-
vious parameters were determined after several trial-and-error 
experiments and a detailed visual assessment for separating 
bright versus dark classes and short versus tall classes.

Finally, we used contextual information from the different 
temporary classes to achieve the final desired classes. Final 
classes included wetlands, agriculture, forest, and urban 
classes. These classes were chosen to allow for easier discrim-
ination between wetland boundaries and upland boundaries 
due to the spectral, contextual, and shape differences between 
classes. The contextual information was based on the spatial 
relationships of an individual object to neighboring objects. 
For example, small bright objects located in the middle of 
agriculture fields (unlikely to be impervious surfaces) were 
reclassified as agriculture classes based on contextual infor-
mation (neighboring relationship). 

In the export operation phase, we exported the final classes 
into raster and vector formats. In addition, we improved the 
wetland polygon’s appearance by applying the smoothing and 
generalizing tools from the advanced editing toolbar in the 
ArcGIS software. 

Accuracy Assessment 
We assessed the classification results for the three study areas 
using a single pixel based approach based on the analysis of 
the error matrix (Congalton and Green, 2009). The following 
accuracy assessment estimators were computed in ERDAS 
Imagine for each study area: overall accuracies, producer’s 
accuracy, user’s accuracy, and kappa coefficient. 

The classification results were evaluated using independent 
stratified randomly generated points for each study area. Each 
sample point was interpreted by a trained analyst, who gave 
the point a value of forest, agriculture, impervious, or wetland. 
The analyst used aerial photos and field data. In the summer of 
2009 and 2011, a team from the Remote Sensing and Geospatial 
Analysis Laboratory at the University of Minnesota collected 
field reference data of independent randomly selected points 
of wetland/upland from different parts of Minnesota including 
the three study areas used in this study. The field data collect-
ed contained the following information: Plant type and percent 
coverage, land-cover/land-use type, UTM coordinates, five to six 
photos of the area, and Cowardin wetland type (Cowardin et 
al., 1974). Upland types included crop fields, other agriculture, 
forests, grasslands, urban areas, construction areas, bare areas, 
and others. We generated 289 reference data points for the Min-
nesota River Headwaters: 118 for Swan Lake and 117 for the 
Thompson Reservoir St. Louis River study areas. 

Results 
Results for the three study areas are summarized in Tables 
1 through 5, Plate 1, and Figure 4. Overall accuracy results 
for the OBIA classification were consistently high (90 to 93 
percent), throughout the three study areas, with little con-
fusion between the four classes. Within the classification 
scheme of the four classes, we obtained producer and user 
accuracies of 92 to 96 percent respectively for the wetland 
class that included wetlands larger than 0.20 ha (0.5 acres) 
across the three ecoregions. In addition to the OBIA accuracy 
assessment classification, a comparison assessment was per-
formed to compare the accuracy of the original NWI and the 
OBIA classification using only two classes (wetland/upland) 
for the same study areas. It is important to acknowledge that 
this comparison of the NWI results and our OBIA results is not 
a direct and fair comparison. The temporal and methodologi-
cal differences between the two datasets are significant. Thus, 
our main objective was to offer an alternative method (OBIA) 
that will allow for improvements to the accuracy of wetland 

Figure 3. Tile stack of the dataset used for the obia approach.

The CTI, GRVI, and NIR layers were specifically used to 
separate wet versus dry classes with the following threshold 
values: NIR ≤45, GRVI ≤0.9, and CTI ≥10.78. These threshold 
parameters were determined through a series of trial-and-
error efforts in combination with photo-interpretation to 
determine whether different “wet classes” (potential wetland 
classes) across the three different ecoregions were sufficiently 
separated from dry classes (potential non-wetland classes). 
The threshold of 10.78 resulted after testing several threshold 
values at different DEM resolutions including 3 m lidar data. 
Our unpublished results indicated that the most accurate CTI 
threshold values to separate wetness (potential wetland) from 
dryness (upland) was the mean plus one-half standard devia-
tion of the CTI range of values. Also, this CTI threshold value 
of 10.78 agrees with the value that Galzki et al., (2008) found 
in their study based on field work. 

The imagery brightness, intensity, and GRVI layer were used 
to classify bright versus dark objects using the spectral differ-
ence segmentation algorithm with a maximum spectral dif-
ference parameter of 12. The nDSM layer was used to separate 
short versus tall objects using the contrast split segmentation 
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Figure 4. Comparison map of the original nwi polygons and obia poly-
gons for a small portion of the Minnesota River-Headwaters with a 
background of an aerial image.

Table 1. obia Classification Error Matrix for Minnesota River-Headwater 
Study Area

Reference Data

M
ap

 d
at

a

Wetlands Agriculture Forest Urban
Row 
Total

User’s 
Accuracy

Wetlands 47 4 0 0 51 92%

Agriculture 2 148 1 5 156 95%

Forest 1 10 31 0 42 74%

Urban 1 5 0 34 40 85%

Column  
Total

51 167 32 39 289
Overall 
Accuracy

Producer’s 
Accuracy

92% 89% 97% 87% 90 %

Overall Kappa Statistic: 0.84

Table 2. obia Classification Error Matrix for Swan Lake Study Area

Reference Data

M
ap

 d
at

a

Wetlands Agriculture Forest Urban
Row 
Total

User’s  
Accuracy

Wetlands 27 1 0 0 28 96%

Agriculture 1 46 0 0 47 98%

Forest 0 0 23 0 23 100%

Urban 0 5 1 14 20 70%

Column 
Total

28 52 24 14 118
Overall  
Accuracy

Producer’s  
Accuracy

96% 88% 96% 100% 93%

Overall Kappa Statistic: 0.90

Table 3. obia Classification Error Matrix for Thompson Reservoir St. Louis 
River Study Area

Reference Data

M
ap

 d
at

a

Wet-
lands

Agriculture Forest Urban
Row 
Total

User’s  
Accuracy

Wetlands 32 0 2 0 34 94

Agriculture 1 20 3 0 24 83

Forest 2 0 37 0 39 95

Urban 0 2 1 17 20 85

Column 
Total

35 22 43 17 117
Overall  
Accuracy

Producer’s  
Accuracy

91% 92% 86% 100% 91%

Overall Kappa Statistic: 0.87

classification boundaries compared to current wetland bound-
aries. Updated accurate boundaries of wetlands are necessary, 
particularly for organizations that currently use older NWI 
maps as a tool to monitor and regulate wetland management 
and conservation.

The comparison assessment was done using the kappa-
based Z-statistic test described in Congalton and Green (2009). 
Additionally, the overall accuracy, user’s accuracy, and 
producer’s accuracies for wetland and upland classes were 
computed for both classifications. These comparison results 
demonstrated that there was a statistically significant differ-
ence between the OBIA and the NWI classification at an alpha 
level of 0.05. For this classification scheme of two classes, the 
comparison results also indicated that the OBIA wetland class 
always had a higher user’s accuracy (92 to 94 percent) and pro-
ducer’s accuracy (91 to 96 percent) across the three study areas 
compared to the NWI user’s accuracy (56 to 71 percent) and 
producer’s accuracy (57 to 79 percent) for the wetland class.

Table 1 shows a full error matrix and accuracy estimates of 
the four classes in the Minnesota River-Headwater study area 
using the OBIA method. The overall accuracy was 90 percent, 
with a kappa score of 0.84 and low errors of commission and 
omission. The wetland class was accurately identified with 
producer’s and user’s accuracies values at 92 percent. Plate 1a 
shows a final OBIA classification map with four classes for the 
Minnesota River-Headwater study area. 

Table 2 shows a full error matrix and accuracy estimates 
of the four classes for the Swan Lake study area. The overall 
accuracy was 93 percent with a kappa score of 0.90, and with 
low errors of commission and omissions for the majority of the 
classes. Plate 1c displays a final OBIA classification map with 
four classes for this study area. The wetland class in this study 
area was the least confused compared to other classes (Table 
2). Overall, the most confused class pair was agriculture and 
urban because these classes can be relatively similar spectrally 
and spatially close in proximity to each other (e.g., an un-
paved road bordering or in the middle of an agricultural field). 

Table 3 shows a full error matrix and accuracy estimates of 
the four classes for the Thompson Reservoir St. Louis River 
study area. The overall accuracy was 91 percent with a kappa 
value of 0.87, and with low errors of commission and omis-
sions for all the classes. Plate 1b displays a final OBIA classifi-
cation map with four classes for the third study area.  

Table 4 shows accuracy estimators of the NWI classification 
and OBIA classification with two classes (upland versus wet-
land) for the three study areas, indicating a higher overall ac-
curacy for the OBIA classifications (97 to 98 percent) compared 
to the NWI classification (74 to 85 percent). In addition, the 
total amount (hectares) of wetlands for the Minnesota River-
Headwaters area, revealed an underestimation of wetlands 
within the NWI classification. This underestimation also is 
confirmed by the wetland omission error (43 percent) and low 
wetland producer’s accuracy (57 percent) obtained for the NWI 
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Plate 1. obia classification maps for (a) Minnesota River-Headwaters, (b) Thompson Reservoir St. Louis River, and (c) Swan Lake. Compari-
son of layers for a small portion of the Thompson Reservoir St Louis River study area, top left visible bands, top right nir band, bottom left 
cti, and (d) bottom right obia classes (wetland/upland).

Table 4. Overall Accuracy and Wetland User’s and Producer’s Accuracy for Two Mapping Classification Results (Classification Scheme: Wetland/Upland)

Land cover classification
Overall  

accuracy
Wetland user’s  

accuracy
Wetland producer’s 

 accuracy
Total area for  

wetlands in ha

OBIA-Minnesota River-Headwaters 97% 92% 92% 7,620.90

NWI-Minnesota River-Headwaters 88% 71% 57% 6,526.38

OBIA-Swan Lake 98% 96% 96% 4,794.52

NWI-Swan Lake 85% 65% 79% 5,812.04

OBIA- Thompson Reservoir St. Louis River 96% 94% 91% 1,927.29

NWI-Thompson Reservoir St. Louis River 74% 56% 66% 2,233.42
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wetland class in this area. The total amount (hectares) of wet-
lands for the Swan Lake and Thompson Reservoir St. Louis 
River areas exposed an overestimation of the current amount 
of wetlands compared to the total area amount of wetlands 
within the NWI classification. This overestimation also is 
confirmed by the wetland commission error (35 to 44 percent) 
and low wetland user’s accuracy (56 to 65 percent) estimators 
obtained for the NWI wetland class in these areas.

Table 5 shows the significance test (Z-test) comparison of 
the two classification methods for each study area; the results 
were found to be statistically different in each study area at a 
95 percent confidence level. Figure 4 shows a comparison of 
the NWI polygons and OBIA polygons for a small portion of the 
Minnesota River-Headwaters area. This figure exposes signifi-
cant differences between NWI and OBIA wetland boundaries, 
revealing greater amount of wetland omission area for the NWI 
classification. Although this comparison may be unfair be-
tween the NWI and our OBIA results, this comparison confirms 
the assumption that NWI maps are of limited utility due to 
their inaccuracy in wetlands versus upland boundaries.

Discussion and Conclusions
In this study, we have evaluated an OBIA approach to map and 
differentiate wetlands from other classes through the design of 
a rule set for each study area. The OBIA approach used in this 
study, across three different ecoregions, provided an adequate 
platform to integrate different types of high resolution data for 
accurately detecting wetlands that were greater than 0.20 ha 
(0.5 acres). OBIA classification maps corresponded well with 
the reference data for each study area, obtaining high overall 
accuracy percentages between 90 to 93 percent for the four 
classes. The results of this study reinforced previous findings 
regarding the value and importance of high resolution data 
to improve wetland classification accuracy. Previous stud-
ies have concluded that high resolution data including lidar, 
aerial, and satellite imagery are very advantageous to distin-
guish between wetlands and non-wetlands classes. These 
studies have found less confusion between wetlands and 
upland classes due to the reduction in mixed pixels and ad-
dition of high resolution elevation data to separate wetlands 
from uplands (Everitt et al., 2004; Huan and Zhang 2008; Laba 
et al., 2008). 

The integration of high resolution imagery and lidar data 
helped to improve classification of wetlands in two ways. 
First, the use of high resolution data including optical and 
lidar through an OBIA approach helped to improve the ac-
curacy of wetland classification over traditional pixel-based 
techniques. For example, Corcoran et al. (2011) integrated 
high resolution imagery with coarse topographic data using 
a decision-tree classifier to map wetlands, in a similar area to 
our third study area in the Northern lakes and forest ecore-
gion area in Minnesota. The Corcoran et al. (2011) results 

were lower in overall accuracy (72 percent) for wetland/
upland classification compared to our OBIA results for wet-
land/upland classification (96 percent). Sader et al., (1995) 
compared four satellite image classification methods, includ-
ing a GIS rule-based model to delineate forest wetlands and 
other wetlands in Maine. Their results were lower in overall 
accuracy, ranging from 72 percent to 82 percent for their two 
study areas. Similarly, other studies have used coarse resolu-
tion imagery data including satellite data to map wetlands, 
but obtained low accuracy estimates for wetland classifica-
tion because of mixed pixels with similar spectral reflectance 
(Jensen et al., 1993; Lunetta and Balogh, 1999). 

Our study demonstrated that an OBIA approach is more 
suitable than traditional pixel-based methods to take advan-
tage of the high resolution data available to map wetlands 
(Dechka et al., 2002; Halabisky et al., 2011; Knight et al., 
2013; Maxa and Bolstad, 2009). The OBIA approach used in 
this study incorporated contextual, spectral, and shape infor-
mation that came from homogenous objects instead of pixel 
units. It is important to note that all the high resolution data 
used in this study were available to the public free of charge. 
This free high resolution data can be advantageous to many 
governmental and non-governmental organizations interested 
in wetland conservation and protection. 

Second, the integration of high resolution imagery and li-
dar data helped to improve classification of wetlands because 
of the use of high resolution lidar to calculate derivatives such 
as the CTI. In a qualitative visual assessment of all the data 
layer inputs, the CTI layer provided additional discrimina-
tion between wetland and other non-wetland classes because 
of its ability to separate low terrain areas from steep terrain 
areas based on topography (Figure 4). For example, forested 
vegetation in local low areas were often confused spectrally 
with forested vegetation in upland areas, but were easier to 
separate with the addition of the CTI data layer. Other studies 
have shown similar results when adding topographic data and 
optical data, resulting in a greater improvement of the wetland 
accuracy classification. For example, in a study by Knight et 
al. (2013), in an area similar to our third study area, different 
input datasets including optical and topographic data were 
evaluated to determine if the addition of different data types 
would improve the accuracy of wetland classification. The 
Knight et al. (2013), results indicated that topographic data 
and derivatives including the CTI helped to significantly im-
prove the accuracy of wetland/upland classification compared 
to other data type scenarios including radar and optical data. 
That and other similar studies (e.g., Baker et al., 2006; Mur-
phy et al., 2007) reinforce our results regarding the value of 
using topographic data, which can be categorized as one of the 
major factors to determine and accurately predict the potential 
location of wetlands across different ecoregions settings. 

It is important to acknowledge that most existing research 
(e.g., Frohn et al., 2009; Moffett and Gorelick, 2013) using 

Table 5. Significance Test (Z-test) for Comparing Two Mapping Classification Scheme (Wetland/Upland) Using 
the Same Independent Reference Data Points for Each Study Area

Land cover classification
Kappa1 versus  

Kappa2
Z-Value

OBIA versus NWI for Minnesota River-Headwaters 0.91 versus 0.56 4.61*

OBIA versus NWI for Swan Lake 0.98 versus 0.61 3.88*

OBIA versus NWI for Thompson Reservoir St. Louis River 0.90 versus 0.42 4.83*

* A Z-value over 1.96 indicates that there is a significant difference at 95% confidence level.
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an OBIA approach to classify wetlands and other land cover 
has focused more on segmentation techniques, while our 
study focused more on the development of a customized rule 
set appropriate to each specific ecoregion setting. The OBIA 
multiscale iterative approach used in this study involved the 
design of a customized rule set, allowing us the incorpora-
tion of contextual and expert knowledge information through 
the CNL in the eCognition Developer software. Rule sets 
can be complex and unique to each area; however, they are 
adaptable with newer data and transferable to similar areas. 
Despite the fact that traditional pixel-based techniques are 
often preferred to study wetlands because of the reduction in 
analyst time over the classification process, OBIA offers a way 
to combine the experience and knowledge of the analyst with 
computer assistance to classify wetlands more accurately in 
a semi-automated way. Experience and expert knowledge are 
critical for mapping wetlands, because these ecosystems tend 
to have a high variability of physical properties. In addition, 
this experience and knowledge were necessary in our study 
to obtain and develop crucial contextual information that was 
not available through traditional pixel-based techniques. In 
addition to the high accuracy of the results, the output maps 
were more aesthetically pleasing than pixel-based maps. 

Our OBIA results were significantly improved over the orig-
inal NWI for the three study areas, with lower rates of wetland 
omissions. Though it is not fair to make a direct comparison 
between the NWI and the OBIA results, the OBIA approach used 
in this study suggests an alternative technique to improve the 
accuracy of wetlands boundaries.

Results from this study included a land-cover classification 
map with four classes and wetlands polygons for each study 
area. Lidar data in combination with high resolution imagery 
significantly improved the accuracy of wetland classification 
across the three different ecoregions in Minnesota. Our results 
provide evidence that diverse ecosystems such as wetlands 
of different sizes can be identified and classified accurately 
using an OBIA approach with high resolution data across the 
three different ecoregions studied in this paper. These results 
are encouraging and useful as an initial classification of 
wetland habitats but further research is encouraged to classify 
wetland types, using recently acquired remote sensing data 
and OBIA rule sets techniques. The OBIA approach presented 
here to map wetlands offers an alternative, semi-automated 
and improved method over traditional pixel based techniques 
and the original NWI. Furthermore, this OBIA approach may 
be suitable for extension to a larger range of wetlands located 
in areas such as the ones used in this study, with similar land-
use, topography and ecoregion. 
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