
 

 
 

A semi-automated, multi-source data fusion 
update of a wetland inventory for east-
central Minnesota, USA 

Steven M. Kloiber1, Robb D. Macleod2, Aaron J. Smith3, Joseph F. Knight4, and Brian J. Huberty5 

 
1) Minnesota Department of Natural Resources (correponding author) 

500 Lafayette Road North 
St. Paul, MN  55155 
Phone: 651-259-5164 / FAX: 651-296-1811 
E-mail: steve.kloiber@state.mn.us 

 
2) Ducks Unlimited Inc. 

1220 Eisenhower Place 
Ann Arbor, MI  48108 

 
3) Equinox Analytics Inc. 

PO Box 6941 
Columbia, SC  29204 
 

4) Department of Forest Resources 
University of Minnesota 
1530 Cleveland Ave N 
Saint Paul, MN  55108 

 
5) U.S. Fish & Wildlife Service 

5600 American Blvd West; Suite 990 
Bloomington, MN  55437 

 



 

1 
 

ABSTRACT 1 

Comprehensive wetland inventories are an essential tool for wetland management, but developing and 2 

maintaining an inventory is expensive and technically challenging. Funding for these efforts has also 3 

been problematic. Here we describe a large-area application of a semi-automated process used to 4 

update a wetland inventory for east-central Minnesota. The original inventory for this area was the 5 

product of a labor-intensive, manual photo-interpretation process. The present application incorporated 6 

high resolution, multi-spectral imagery from multiple seasons; high resolution elevation data derived 7 

from lidar; satellite radar imagery; and other GIS data. Map production combined image segmentation 8 

and random forest classification along with aerial photo-interpretation. More than 1000 validation data 9 

points were acquired using both independent photo-interpretation as well as field reconnaissance. 10 

Overall accuracy for wetland identification was 90% compared to field data and 93% compared to 11 

photo-interpretation data. Overall accuracy for wetland type was 72% and 78% compared to field and 12 

photo-interpretation data, respectively. By automating the most time consuming part of the image 13 

interpretations, initial delineation of boundaries and identification of broad wetland classes, we were 14 

able to allow the image interpreters to focus their efforts on the more difficult components, such as the 15 

assignment of detailed wetland classes and modifiers. 16 

Keywords: wetlands inventory, wetland mapping, accuracy assessment, remote sensing  17 
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INTRODUCTION 18 

Wetland inventory maps are essential tools for wetland management, protection, and restoration 19 

planning. They provide information for assessing the effectiveness of wetland policies and management 20 

actions. These maps are used at all levels of government, as well as by private industry and non-profit 21 

organizations for wetland regulation and management, land use and conservation planning, 22 

environmental impact assessment, and natural resource inventories. Wetland inventories are used to 23 

assess impacts of regulatory policy (Gwin et al. 1999), assess habitat distribution and quality (Austin et 24 

al. 2000; Hepinstall et al. 1996; Marchand and Litvaitis 2004; Knutson et al. 1999), evaluate carbon 25 

storage potential and climate change impacts (Euliss et al. 1999; Burkett and Kusler 2000), and measure 26 

and predict waterfowl and amphibian population distribution (Yerkes, et al. 2007; Munger et al. 1998; 27 

Knutson et al. 1999). 28 

There are several notable efforts across the globe to conduct national and regional comprehensive 29 

wetland inventories. The Canadian Wetland Inventory (CWI) is developing a comprehensive wetland 30 

inventory based on remote sensing data from Landsat and Radarsat platforms (Li and Chen 2005; 31 

Fournier et al 2007). The CWI maps wetlands down to a minimum mapping unit of 1 ha using a five class 32 

system. In 1974, the U.S. Fish and Wildlife Service began an effort to implement the National Wetlands 33 

Inventory (NWI) for the United States (Cowardin et al. 1979). The NWI is based on manual aerial photo-34 

interpretation with a target map unit of 0.2 ha and a detailed hierarchical classification scheme involving 35 

wetland systems, classes, subclasses, water regimes, and special modifiers (Dahl 2009). The 36 

Mediterranean wetland initiative promotes standardized methods for wetland inventory and monitoring 37 

across multiple countries in the Mediterranean region (Costa et al 2001). Wetland classification and 38 

mapping recommendations for this initiative closely follow the NWI. More recently, wetlands across 39 

China have been mapped using Landsat data into three broad classes with 15 subtypes generally based 40 

on landscape and landform characteristics (Gong et al. 2010). Despite these efforts, a review of the 41 
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status of wetland inventories concluded that there still are significant gaps in our knowledge about the 42 

extent and condition of global wetland resources. Finlayson and Spiers (1999) found that outside of a 43 

few of the more developed countries and regions, wetland inventories were generally incomplete or 44 

non-existent. 45 

Even regions with comprehensive wetland inventories require periodic updates. For example, in 46 

Minnesota, most of the NWI is 25 to 30 years old. Many changes in wetland extent and type have 47 

occurred since the original inventory was completed. Agricultural expansion and urban development 48 

have contributed to wetland loss. Conversely, various wetland conservation policies and programs have 49 

resulted in the restoration of some previously drained wetlands and the creation of new wetlands. 50 

Furthermore, limitations in the technology, methodology and source data for the original NWI resulted 51 

in an under representation of certain types of wetlands. In northeastern Minnesota, wetlands were 52 

originally mapped using 1:80,000 scale panchromatic imagery. The resulting wetland maps in this area 53 

tend to be very conservative, missing many forested and drier emergent wetlands (LMIC 2007). 54 

Updating the wetland inventory for such areas enhances the ability of conservation organizations to 55 

make better management decisions. There is a significant ongoing need to develop and update wetland 56 

inventories. 57 

Maintaining wetland inventories can be expensive and technically challenging given the complexity of 58 

wetland features and user expectations for a high degree of accuracy. Federally funded updates to the 59 

NWI are required to conform to the federal wetland mapping standard (FGDC 2009). This standard calls 60 

for ≥98% producer’s accuracy for all wetland features larger than 0.2 ha and a wetland class-level 61 

accuracy of ≥85%. Unfortunately, funding for mapping in the NWI program has declined over the past 20 62 

years (Tiner 2009) and has been almost entirely eliminated as of 2014 (NSGIC 2014). 63 
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Historically, the NWI has been primarily the product of manual aerial photo-interpretation (Tiner 1990). 64 

Much of the original delineation and classification was done using hardcopy stereo imagery with mylar 65 

overlays. In the last decade, NWI mapping efforts have largely transitioned to heads-up, on-screen 66 

digitizing and classification from digital orthorectified imagery (Drazkowski et al 2004; Dahl et al. 2009). 67 

Despite the efficiency gains achieved by migrating to an on-screen digitizing process, the process is still 68 

labor-intensive.  69 

Automated classification of wetlands from remote sensing data has had varied results. Ozesmi and 70 

Bauer (2002) compare the results of automated wetland classification using satellite imagery to wetland 71 

mapping from manual photo-interpretation. In their review, they note that the limitations of satellite 72 

imagery, specifically resolution limitations when compared to aerial photography as well as limitations 73 

related to spectral confusion between classes, led the NWI program to choose a method based on 74 

photo-interpretation. However, given the advancements in the fields of remote sensing and image 75 

analysis since the NWI was originally designed, the use of automated mapping and classification 76 

techniques warrants reconsideration.  77 

Collecting, managing, and analyzing large quantities of high spatial resolution digital imagery has 78 

improved significantly over the past two or three decades. Airborne imagery acquisition systems like the 79 

Zeiss/Intergraph Digital Mapping Camera (Z/I DMC) and the Vexcel Ultracam are commonly used to 80 

acquire four-band multispectral imagery at less than 1-meter resolution. In addition, high-resolution, 81 

multispectral imagery is also available through various satellite systems such as Worldview-2, Quickbird 82 

and IKONOS. The costs for data storage required for the large quantities of high-resolution imagery data 83 

have dropped significantly and advances in automated image analysis techniques have improved the 84 

efficiency with which these data can be processed. 85 
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Radar imagery shows potential to provide new information such as water level changes in wetlands, soil 86 

saturation and vegetation structure (Corcoran et al. 2011; Bourgeau-Chavez et al. 2013). In the near 87 

term, the sources of satellite radar imagery are somewhat limited. Yet, Radarsat imagery is being used 88 

operationally as part of the Canadian Wetland Inventory (Brisco et al. 2008).  89 

Recent widespread adoption of scanning topographic lidar systems also provides a new source of highly 90 

relevant digital information for wetland mapping. The distribution and occurrence of wetlands is heavily 91 

influenced by topography. For example, Beven and Kirkby (1979) described a topographic index to 92 

predict spatial patterns of soil saturation based on the ratio of the upslope catchment area to the 93 

tangent of the local slope. Numerous researchers have used this topographic index, alternately known 94 

as the compound topographic index (CTI) or the wetness index, to predict the occurrence of wetlands 95 

(Hogg and Todd 2007; Murphy et al. 2007; Rampi et al. 2014b). As such, topographic analysis of lidar 96 

data is an important emerging technology for wetland mapping. 97 

Image segmentation is a process that groups adjacent image pixels into larger image objects based on 98 

criteria specified by the image analyst. The goal of segmentation is to simplify the image into a smaller 99 

number of potentially meaningful objects which can then be classified using various attributes 100 

describing these objects (i.e. brightness, texture, size, and shape). This technique simultaneously 101 

reduces data volume while incorporating spatial contextual information in the classification process. 102 

Image segmentation has been shown to be a potentially valuable technique for improving image 103 

classification accuracy for mapping land cover (Myint et al. 2011) and wetlands (Frohn et al. 2009).  104 

Classification algorithms like random forest (Breiman 2001) have greatly improved our ability to 105 

effectively integrate data from multiple sources into an automated classification procedure. 106 

Incorporating data from multiple sensor systems as well as ancillary GIS data can potentially improve 107 
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wetland classification accuracy (Corcoran et al. 2011, Knight et al. 2013, Corcoran et al. 2013, Rampi et 108 

al. 2014a).  109 

Here we describe a large area application of a semi-automated classification process used to update the 110 

NWI. The objective of this effort was to determine whether automated techniques such as image 111 

segmentation, digital terrain analysis, and random forest classification could be combined with multiple 112 

high-resolution remote sensing and GIS data sets and traditional photo-interpretation to efficiently 113 

produce an accurate and spatially detailed wetland inventory map.  114 

METHODS 115 

Study Area 116 

The study area is 18,520 square kilometers, centered on the 13-county metropolitan area of 117 

Minneapolis and Saint Paul, Minnesota (Figure 1). The study area is situated primarily in the Eastern 118 

Broadleaf Forest Ecological Province (DNR 2013) and the climate is typical of its continental position 119 

with hot summers and cold winters. Typical annual precipitation ranges from about 76 to 81 centimeters 120 

(Minnesota Climatology Working Group 2012). Land use in the study area varies from a dense urban 121 

core with a mix of commercial and high density residential area, to lower density suburban and exurban 122 

communities, and rural agricultural and forests. 123 

Input Data 124 

The primary imagery used for the NWI update was spring, leaf-off, digital aerial imagery with four 125 

spectral bands (red, green, blue, and near infrared) in 541 orthorectified USGS quarter quadrangle tiles. 126 

The imagery was acquired using a Z/I DMC camera in early April of 2010 and late April to early May of 127 

2011. Imagery for 60% of the project area was acquired at a spatial resolution of 30 cm, while imagery 128 

for the other 40% was acquired at 50 cm resolution. The imagery has a horizontal root mean square 129 
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error (radial) of 78 cm (MnGeo 2010). For the image segmentation process, the 30cm images were 130 

resampled to 50cm resolution using a bilinear interpolation algorithm.  131 

Thirteen single-date scenes of PALSAR L-band radar were acquired to cover the project area to aid in the 132 

identification of forested wetlands. The scenes available were a combination of single and dual 133 

polarization during a leaf-off seasonal window. The Alaska Satellite Facility MapReady Remote Sensing 134 

Tool Kit (ASF 2011) was used for terrain correction and geo-referencing. Additional geo-referencing was 135 

performed in ArcGIS using control points selected from the aerial imagery. A radar processing extension 136 

in Opticks was used to reduce speckle in the data (Opticks 2011). Radar imagery was classified using a 137 

10-class maximum-likelihood ISODATA clustering routine implemented in ERDAS Imagine software 138 

(ERDAS 2008). The classes associated with “wet forest” training sites were identified and the 139 

classification was applied to all clusters within the radar image. 140 

Digital elevation models (DEMs) were derived from lidar data for approximately 60% of project area, 141 

while DEMs for the remainder were 10-meter resolution DEMs obtained from the National Elevation 142 

Dataset. The typical lidar point spacing was about 1 point per square meter. The Minnesota DNR 143 

processed the bare earth points into a digital elevation model using 3D Analyst for ArcGIS by importing 144 

the points into a terrain data set and then interpolating a 1-meter DEM that was subsequently 145 

resampled to a 3-meter DEM. This lidar DEM has a vertical root mean square of 18 cm. 146 

ArcGIS Spatial Analyst (ESRI 2011) was used to calculate slope, curvature, plan curvature, profile 147 

curvature, topographic position index (TPI) and compound topographic index (CTI). TPI was calculated by 148 

subtracting the mean elevation for a given pixel from the mean elevation of its neighborhood (Guisan et 149 

al. 1999). We used an annulus neighborhood with radii of 15 and 20 meters. The CTI (Moore 1991) was 150 

calculated using a sinkless version of the DEM. A slope grid and upstream catchment area grid were 151 
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calculated using the D-Infinity flow directions tool from TauDEM (Tarboton 2003). CTI was then 152 

computed from slope and contributing drainage area using a custom python script. 153 

The Natural Resources Conservation Service (NRCS) digital Soil Survey Geographic (SSURGO) layers were 154 

compiled for the project area (NRCS 2010). Two derived raster products were produced from SSURGO 155 

data; (1) the soil water regime class, and (2) the percentage of hydric soil. The variables used to derive 156 

these products included drainage class, flood frequency for April, pond frequency for April, and pond 157 

frequency for August. 158 

The layers described above were formatted for input to an Object Based Image Analysis (OBIA) process 159 

using the Cognition Network Language (CNL) implemented within eCognition software (Trimble 2010). 160 

Images were clipped to the boundary of the relevant quarter quad tile and stacked with ERDAS Imagine 161 

software (ERDAS 2008) into a single multi-layer file subsequently referred to here as the layer-stack.  162 

Training Data  163 

Reference field data were collected to serve as training data for the random forest classification and to 164 

guide the interpreters during the image interpretation process. A set of 12 representative sub-areas 165 

were selected for field visits to provide representative training data for the wetland types found 166 

throughout the project area. The sub-areas were selected to be spatially distributed and to represent 167 

the range of landscape types in the project area. Within these sub-areas, individual wetland sites were 168 

selected for field visits using a stratified-random sampling approach with strata proportioned according 169 

to the frequency of wetland classes. Rarely occurring wetland types were always flagged for field visits. 170 

A total of 510 field sites were visited. The training data were augmented by including 1967 sites selected 171 

from field data provided by field biologists at the Metropolitan Mosquito Control District as well as 873 172 

sites image-interpreted by Ducks Unlimited. 173 
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All training data were classified according to the Cowardin classification system (Cowardin et al. 1979), 174 

which is a hierarchical system developed to standardize the classification of wetlands and deepwater 175 

habitats of the United States. Additional details of the classification system including the definition of 176 

each system, subsystem, class, and subclass can be found in Cowardin et al. (1979) and Dahl et al. 177 

(2009).  178 

Automated Components 179 

The object-based image analysis (OBIA) rule set consisted of several steps to separate wetlands from 180 

other land cover types. The process began with a multi-resolution segmentation algorithm (Baatz and 181 

Schape2000) that created image objects (groups of spectrally similar pixels). Parameters for the initial 182 

segmentation were; scale factor = 6, shape = 0.5, compactness = 0.9, RGB weight = 1, and near infrared 183 

weight = 2. A relatively small scale parameter was chosen to ensure that small wetlands would be 184 

represented in the lowest level of the image object hierarchy. A three-tier hierarchy consisting of 185 

spatially nested sub-objects, mid-level objects, and super objects provided a flexible framework for 186 

iteratively integrating information from different image and topographic data sources. The rule set was 187 

designed to draw boundaries for real world features of interest (e.g., stream beds) by iteratively 188 

aggregating sub-objects at a temporary mid-level according to rules defining specific features of interest 189 

for each major sequence of the larger rule set. Once useful boundaries for a particular sequence were 190 

identified (using temporary classification thresholds and modification of the object boundaries at the 191 

mid-level), the feature boundary information was conveyed to the super-level for inclusion in the final 192 

output. Each modified mid-level was then destroyed and the unmodified sub-objects were re-used to 193 

initialize a new version of the mid-level to repeat the process of selective aggregation and classification 194 

for the next feature of interest. 195 

The first major process sequence was designed to identify wooded-wetlands using the PALSAR radar 196 

data. Sub-objects were aggregated at a temporary mid-level according to boundaries created from the 197 
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previously classified PALSAR data. A mask layer with the boundaries of the PALSAR wetland clusters was 198 

incorporated into the layer stack data. The boundaries created by the 20m resolution PALSAR-derived 199 

wooded wetland mask were not cartographically compatible with boundaries for other features derived 200 

from the 0.5m resolution image data. This difference was reconciled in the eCognition rule set via a 201 

custom-built iterative pixel-based object merging and reshaping algorithm applied to the mid-level in 202 

the object hierarchy.  203 

The second major process sequence in the rule set was designed to isolate open water stream features 204 

and stream-bed topographic features. A preliminary linear stream vector layer was generated using Arc 205 

Hydro terrain modeling software (Maidment 2002) to identify likely flow pathways using the lidar 206 

derived DEM data. This linear flow path layer was used to seed a region growing sequence that 207 

identified spectrally dark sub-objects contiguous to the modeled stream lines. These objects were 208 

merged at the mid-level and the boundaries were smoothed to form the stream polygons, which were 209 

then stored at the super-object level. A spectral difference segmentation algorithm (Definiens Imaging, 210 

2009) was then used on the DEM (threshold value of 0.05m) to generate temporary elevation contours. 211 

The contour objects containing nested stream-sub-objects were then identified and classified as 212 

potential riparian areas, which were more likely to contain wetlands.  213 

The third major process sequence in the rule set separated forested areas from non-forested areas and 214 

selectively generated contour lines in forest polygons. Forested areas were identified by aggregating 215 

sub-objects at a temporary mid-level according to image spectral characteristics (0.017 < NDVI < 0.28 216 

and RGB brightness < 150) and textural characteristics (average mean difference to neighbors of sub-217 

objects > 0.95 in the NIR band). Small candidate forest objects were then merged into stand sized 218 

forested objects. Based on prior experience, the photo interpretation team requested that elevation 219 

data be added to forested areas. A spectral difference algorithm which merged together objects with 220 
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similar elevation values was applied to the sub-objects of the forest stand objects. An elevation 221 

threshold value of 0.33m was used to create objects that approximate 0.33m contour intervals. 222 

The final major process sequence in the rule set was designed to create a background layer of general-223 

purpose image objects, which are delivered to the photo-interpretation team for editing in order to 224 

create the final wetland map. A multi-resolution segmentation algorithm (parameters: scale factor = 225 

400, shape = 0.1, compactness = 0.9, RGB weight = 1 and NIR weight = 2) was used in all areas not 226 

classified in the previous sequences to delineate strongly visible boundaries in the spring leaf-off 227 

imagery. This finalized set of image objects was then smoothed and exported in a vector shape-file 228 

format for transfer to the photo-interpretation team.  229 

Each image object has numerous associated attributes derived from the imagery, DEM, and other 230 

ancillary data sets. These attributes, along with the training data, were used to create a classification 231 

model using the randomForest package in R (R Development Core Team 2011; Breiman 2001). All image 232 

objects were also assigned a unique identification number so that the classification model results could 233 

be linked back to the image objects. 234 

Manual Components 235 

A 750-meter square grid system (enabling the interpreter to completely view an image section on a 236 

monitor at 1:3,000) overlaid on each image was used to systematically guide image-interpretation 237 

efforts and ensure complete interpretation of each image. Interpreters viewed the classified image 238 

segmentation data superimposed over the spring imagery to identify and categorize wetlands. 239 

Additional ancillary data were used during the interpretation process when needed, including; summer 240 

imagery from 2008-2010, SSURGO soils derived products, the DEM, and DEM derived products. The 241 

interpreters could use the segmentation derived boundary without modification, manually edit the 242 

polygon boundary, or discard the segmentation based boundary to manually digitize a new boundary. 243 
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Adjacent wetland polygons of the same class were merged. All automated wetland classification values 244 

were either confirmed or manually reclassified by a human interpreter. As with the field data, all 245 

mapped wetland polygons were classified according to the Cowardin classification system (Table 1). 246 

Validation Data  247 

Two sets of independent validation data were created using field checks and independent image-248 

interpretation, respectively. The validation data were not made available to the image analysts. These 249 

data were reserved to make a post-processing accuracy assessment of the updated wetland inventory 250 

maps. 251 

We created a set of 951 validation points through field checks and another set of 901 validation points 252 

through independent image-interpretation. All points were initially selected using a stratified-random 253 

sampling process with the strata defined by a recently developed land cover dataset from the 254 

Minnesota wetland status and trends monitoring program (Kloiber et al. 2012). The stratification was 255 

designed to place 75% of the selected points in wetlands and 25% in uplands. We used this sampling 256 

scheme in an attempt to ensure that all wetland classes were well represented in the validation data. 257 

Field validation points were evaluated by crews making ground-level assessments of wetland class 258 

between May and September of 2010. Geographic coordinates were acquired at each observation site 259 

using a Trimble Juno GPS data logger and the data were differentially corrected to improve positional 260 

accuracy. Image-interpretation validation points were classified using image-interpretation of high-261 

resolution, digital stereo imagery, lidar-derived digital elevation models, and other ancillary data. Digital 262 

stereo imagery was viewed using a stereo-photogrammetry workstation equipped with StereoAnalyst 263 

software for ArcGIS (ERDAS 2010) and a Planar SD1710 stereo-mirror monitor. 264 

The mapped wetland class was associated with the validation reference class using a spatial join process 265 

in ArcGIS. Distances to the wetland feature and class boundaries were computed. To address potential 266 
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confusion between classification accuracy and positional accuracy, image-interpreted points that fell 267 

within the 95% confidence interval for the positional accuracy of the imagery (1.53 meters) of a wetland 268 

feature or class boundary were excluded from analysis. Field points that fell within the combined 95% 269 

confidence interval for the positional accuracy of the imagery and the GPS (5.64 meters) of a wetland 270 

feature or class boundary were also excluded. 271 

The data were compared at two levels: agreement for a simple two-category system of wetland-upland 272 

features, and agreement for the wetland class-level. The producer's accuracy, the user's accuracy, and 273 

the overall accuracy were calculated (Congalton and Green 2008). The producer’s accuracy is equal to 274 

the complement to the omission error rate for the map, whereas the user’s accuracy is equal to the 275 

complement to the commission error rate. Mixed classes occur occasionally in the mapped data due to 276 

spatial scale limitations. Wetland features that consist of highly interspersed classes are impractical to 277 

separate and classify at the map scale. However, mixed classes did not occur in the validation data. For 278 

the purposes of the accuracy assessment, if the field class matched either of the classes in a mixed class 279 

map unit, it was counted as a match. 280 

RESULTS 281 

Intermediate Automated Classification Results 282 

Initial image segmentation efforts resulted in many small image objects, requiring significant time spent 283 

merging, classifying, and editing features (Figure 2). However, feedback from the photo-interpreters was 284 

incorporated into a refined image segmentation rule set to provide image objects which more closely 285 

represented the wetland features of interest. Initially, the typical number of image objects per quarter 286 

quad tile was about 96,000; after refining the segmentation rules the per-tile average object count was 287 

about 4,300. The refined segmentation rules aggregated image objects resulting in an increase in the 288 
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mean object size of 430 m2 to 1,600 m2. The minimum object area stayed roughly the same, while the 289 

maximum object area went from 8,900 m2 to 57,000 m2.  290 

The subsequent random forest classification had an overall bootstrapped accuracy of 92% for separating 291 

wetlands from uplands and an overall bootstrapped accuracy of 69% for wetland class assignment. 292 

These values should be treated with some degree of caution, as the bootstrapped accuracy results are 293 

not directly comparable to the final accuracy assessment using the independent validation data. 294 

Nonetheless, these results do support the notion that the automated classification component 295 

significantly reduces the work load of the manual photo-interpreter by providing a reasonably accurate 296 

intermediate product.  297 

Final Product Accuracy Assessment 298 

There were 743 field validation data points after excluding points within the positional uncertainty of a 299 

mapped wetland boundary. The overall field accuracy for discriminating between wetland and upland 300 

was 90%. The wetland producer’s accuracy was 90% and the user’s accuracy was 96% (Table 2). 301 

The overall accuracy at the wetland class-level was 72% (Table 3) when compared to the field validation 302 

data. Many of the discrepancies between the field class and the mapped class were the result of 303 

confusion between the limnetic (L1) and littoral (L2) systems as well as confusion between the aquatic 304 

bed (AB) and unconsolidated bottom (UB) classes. 305 

There were 891 validation points in the image-interpreted dataset after excluding points within the 306 

positional uncertainty of the imagery of a mapped wetland boundary. The overall image-interpretation 307 

accuracy for discriminating between wetland and upland was 93% (Table 4). The wetland producer’s 308 

accuracy was 93% and the user’s accuracy was 98%. 309 

The overall accuracy at the wetland class-level was 78% (Table 5) when compared to the image-310 

interpretation validation data. As with the assessment using field data, many of the classification 311 
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discrepancies were associated with confusion between the limnetic and littoral subsystems as well as 312 

confusion between the aquatic bed and unconsolidated bottom classes. 313 

Comparison to Original NWI 314 

The original NWI data for the 13-county project area has 125,586 wetland class features with a total 315 

surface area of 2,958 square kilometers. Whereas, the updated NWI data for the same area includes 316 

195,983 wetland class features with a total surface area of 3,104 square kilometers; an increase of 56% 317 

for the number of wetland class features and an increase of 4.9% in wetland area. The increase in the 318 

number of individual wetland class features suggests that the updated NWI was better able to 319 

distinguish between wetland habitat classes within wetland complexes, identifying more wetland 320 

polygons with less cross-class aggregation. However, an increase of total wetland area of 4.9% over a 321 

period where urban development is widely believed to have resulted in wetland loss suggests that the 322 

updated wetland inventory also mapped many wetlands that were missed in the original inventory. A 323 

visual comparison of the results also supports this conclusion as well as clearly showing a more precise 324 

boundary placement (Figure 3).  325 

Using our validation data, we found that present-day feature-level accuracy of the original NWI is 76% 326 

based on the image-interpreted validation data and 75% based on the field validation data (Table 6). The 327 

updated wetland inventory described here has significantly better accuracy for upland-wetland 328 

discrimination for present-day users. Likewise, the class-level accuracy for the updated NWI is also 329 

better than the original NWI for present-day users. The class-level accuracy increased by 19% based on 330 

the field validation data while it increased by 26% based on the image-interpreted validation data. To be 331 

fair, we recognize that the original NWI has a much lower accuracy at the present time in large part due 332 

to its age as well as from differences in the technical mapping approach.  333 
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DISCUSSION 334 

Automation Efforts 335 

Past efforts using automated classification of remote sensing data for the NWI have largely focused on 336 

the use of relatively coarse resolution, optical satellite imagery data (Tiner 1990; FGDC 1999; Ozesmi 337 

and Bauer 2002). Mapping and classifying wetlands to the Cowardin classification system used in the 338 

NWI is inherently difficult due to the number of classes, sub-classes and modifiers and the temporal 339 

variability associated with wetlands. Therefore, we opted not to attempt to fully automate the 340 

classification process; instead we designed the automation strategy around making the human image 341 

interpretation process more efficient. By automating the most time-consuming part of the image 342 

interpretations, initial delineation of boundaries and identifying broad wetland classes, we were able to 343 

allow the image interpreters to focus more of their efforts on the most difficult components of the 344 

process, such as the assignment of detailed wetland classes and modifiers. 345 

A significant task during this project was adapting automation techniques developed in a research 346 

setting (Corcoran et al. 2011, Knight et al. 2013, Corcoran et al. 2013, Rampi et al. 2014a) for use in 347 

production over a large area. The effort allocated to building, testing and refining the automation steps 348 

required an up-front investment, but the labor saved during the image interpretation process resulted in 349 

a net gain in efficiency. Rampi et al. (2014a) used a similar automated method for a simple four-class 350 

map without subsequent manual photo-interpretation, achieving overall accuracies for wetlands in the 351 

range of 96-98 percent. These results support our assertion that the initial wetland mapping steps can 352 

be partially automated, while leaving the more detailed classification steps to human photo-353 

interpreters. This strategy provides improvements in overall efficiency while still maintaining high 354 

standards for spatial resolution, classification detail, and accuracy. 355 

Accuracy Assessment 356 
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The federal wetland mapping standard provides recommendations on map accuracy goals but little 357 

specific guidance on how to conduct wetland mapping accuracy assessments. There are many design 358 

decisions involved in developing an accuracy assessment method for a remote sensing wetland 359 

inventory that can influence the results. We used two different validation data sets with different 360 

methods of acquisition, one using field data and another using image-interpreted data. Simply changing 361 

the data acquisition method resulted in a difference in the overall accuracy of 3% at the feature level 362 

and 6% at the class-level. Changes in a number of other variables such as the distribution across the 363 

sampling strata or the threshold used for screening out the effects of position uncertainty would affect 364 

the calculation of final map accuracy values. Comparing accuracy results from one project to the next 365 

will be difficult without some additional standardization for the accuracy assessment method. 366 

The federal wetland mapping standard does not address errors of commission. The standard states that 367 

98% of all wetlands “visible on an image” and larger than 0.2 ha shall be mapped (FGDC 2009). Based on 368 

this, the producer’s accuracy for this project fell 5% short of the requirement. However, the federal 369 

wetland mapping standard only specifies a threshold for errors of omission and not errors of 370 

commission. A user’s accuracy of 98% carries no weight with respect to the federal wetland mapping 371 

standard, but clearly it is an important consideration for the end users of the data. Without specific 372 

quantification of commission errors, it is possible to bias a mapping project toward meeting the federal 373 

standards by intentionally over-classifying upland features as wetlands. The federal standard also calls 374 

for 85% attribute accuracy for wetland classes, but it is not clear whether this is intended to be a 375 

standard for the overall class accuracy or the user’s or producer’s accuracy on individual wetland 376 

classes.  377 

There is an important relationship between class accuracy, the number of classes mapped, and how 378 

distinct these classes are. In the present case, the overall class accuracy for this project is 78%, but some 379 

of the observed classification error is certainly due to confusion between highly similar or temporally 380 
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variable wetland classes. For example, the distinction between the limnetic and littoral systems is 381 

primarily based on water depth. The portion of a lacustrine system deeper than 2 meters is defined as 382 

limnetic; whereas the portion shallower than 2 meters is defined as littoral (Cowardin et al. 1979). 383 

Accurate classification of limnetic and littoral areas is very difficult without bathymetric survey data 384 

(Irish and Lillycrop 1999; Dost and Mannaerts 2008). Not only are the optical imagery, near-infrared 385 

lidar, and radar data used in this mapping effort limited in their ability to assess water depth, but also, 386 

the field validation data were acquired from shore. As a result, it is difficult to determine whether the 387 

error lies within the field data or the map data. In another example, the distinction between aquatic bed 388 

and unconsolidated bottom wetland classes is defined by the presence or absence of rooted aquatic 389 

vegetation. The confusion between these classes likely arises in large part due to the dynamic nature of 390 

aquatic vegetation. Aquatic vegetation may be present in one part of the wetland in a given year (or 391 

season within a year) and then appear in a different part of the same wetland in another year. Given the 392 

expense and difficulty associated with separating out some of the wetland classes in the Cowardin 393 

system, if a high level of accuracy for individual wetland classes is desired, it would be preferable to 394 

simplify the classification by aggregating some classes. 395 

This mapping effort exceeded many of the input data requirements of the federal wetland mapping 396 

standard. The base imagery exceeded both the spectral and spatial resolution requirements as well as 397 

the positional accuracy requirement. The input data requirements were also exceeded by including 398 

datasets like lidar, radar, and multi-temporal imagery. Given the unusually high quality and richness of 399 

the source data used in this project, the results raise the question whether it is practically feasible to 400 

achieve the federal wetland mapping standard in large scale wetland mapping projects.  401 

In addition to the above observations about issues with the interpretation and application of the federal 402 

wetland mapping standard, another key result from this work was to quantify the overall improvement 403 

in accuracy resulting from the update of the wetland inventory. Our results showed that when 404 



 

19 
 

compared to current field data we achieved a 15% increase in wetland-upland discrimination and a 19% 405 

increase in wetland class accuracy. We have previously noted that this was not meant to be an 406 

assessment of the accuracy of the original NWI at the time of its creation. It seems likely that the original 407 

NWI had a higher accuracy at the time it was created. However, it is also important to note that in the 408 

absence of an updated wetland inventory, people will continue to use the original NWI to assess current 409 

conditions. Continuing to use inaccurate and outdated data results is likely to result in unnecessary 410 

effort or inadequate wetland protection. The updated NWI provides a better source of information from 411 

which to base present day natural resource management decisions.  412 

In conclusion, we believe these results show that it is possible to produce high quality wetland 413 

inventories using a semi-automated process that will meet many, if not all, of the needs stated in the 414 

beginning of this paper. With the limited funding for these types of mapping efforts, additional work is 415 

needed to continue to increase the efficiency of wetland mapping, while at the same time producing 416 

results that meet the needs of the resource managers. Also, there is a need to refine and standardize 417 

wetland mapping accuracy assessment methods. Furthermore, detailed accuracy assessment results, 418 

such as presented here, provide important information to users who seek to understand the potential 419 

limitations of remotely sensed wetland inventory data. 420 
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TABLES 
 

Table 1 

Class Code Class Description 

L1UB Lacustrine Limnetic Unconsolidated Bottom 

L2AB Lacustrine Littoral Aquatic Bed 

L2EM Lacustrine Littoral Emergent 

L2UB Lacustrine Littoral Unconsolidated Bottom 

L2US Lacustrine Littoral Unconsolidated Shore 

PAB Palustrine Aquatic Bed 

PEM Palustrine Emergent 

PFO Palustrine Forested 

PSS Palustrine Scrub-Shrub 

PUB Palustrine Unconsolidated Bottom 

R2AB Riverine Lower Perennial Aquatic Bed 

R2UB Riverine Lower Perennial Unconsolidated Bottom 

R2US Riverine Lower Perennial Unconsolidated Shore 

UPL Upland 
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Table 2 

 
Map Determination 

Reference Determination Upland Wetland Total 

Upland 201 18 219 

Wetland 54 470 524 

Total 255 488 743 

    Overall Accuracy 90% 
  Wetland Producer’s Accuracy 90% 
  Wetland User’s Accuracy 96% 
   

Table 3 

 
Map Class 

Reference Class L1UB L2AB L2EM L2UB PAB PEM PFO PSS PUB R2AB R2UB UPL  Total 

L1UB 1 
           

1 

L2AB 2 14 2 
 

2 
     

1 
 

21 

L2EM 
  

  
         

0 

L2UB 2 
  

21 
      

1 
 

24 

PAB 
 

7 
 

2 24 3 
  

27 
  

5 68 

PEM 
 

1 
  

3 130 1 3 6 
 

1 37 182 

PFO 
     

2 22 6 
   

24 54 

PSS 
     

8 6 18 
   

13 45 

PUB 
   

1 3 
   

27 
  

3 34 

R2AB 
         

  2 
 

2 

R2UB 
          

12 3 15 

UPL 
     

6 7 
 

1 
  

223 237 

Total 5 22 2 24 32 149 36 27 61 0 17 308 683 
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Table 4 

 
Map Determination 

Reference Determination Upland Wetland Total 

Upland 208 12 220 

Wetland 47 624 671 

Total 255 636 891 

    Overall Accuracy 93% 
  Wetland Producer’s Accuracy 93% 
  Wetland User’s Accuracy 98% 
   

Table 5 

 
Map Class 

Reference Class L1UB L2AB L2EM L2UB L2US PAB PEM PFO PSS PUB R2AB R2UB R2US UPL  Total 

L1UB 39 
  

5 
       

8 
  

52 

L2AB 2 26 9 3 
 

1 4 
       

45 

L2EM 
  

  
           

0 

L2UB 5 3 3 31 
       

3 
  

45 

L2US 
    

1 
         

1 

PAB 
     

21 5 
  

11 1 1 
  

39 

PEM 
     

2 99 2 1 1 
   

18 123 

PFO 
      

1 30 3 
    

19 53 

PSS 
      

13 2 20 
  

1 
 

7 43 

PUB 
 

1 
 

1 
 

22 7 1 1 142 
   

5 180 

R2AB 
          

  
   

0 

R2UB 
     

2 2 
    

58 
  

62 

R2US 
      

1 1 
   

6 6 
 

14 

UPL 
      

5 5 
   

1 
 

208 219 

Total 46 30 12 40 1 48 137 41 25 154 1 78 6 257 876 
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Table 6 

 Original NWI Updated NWI 

Feature Accuracy   

Field 75% 90% 

Image-interpreted 76% 93% 

Class Accuracy   

Field 53% 72% 

Image-interpreted 52% 78% 
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TABLE CAPTIONS 

Table 1: Wetland class codes and associated descriptions from Cowardin et al. (1979) applicable to the 

study area. 

Table 2: Accuracy comparison for wetland-upland discrimination using field validation data. Class 

agreement between the two datasets is indicated by the shaded cells in the table 

Table 3: Accuracy comparison between the field validation class and the mapped wetland class in the 

updated NWI data. Class agreement between the two datasets is indicated by the shaded cells in the 

table. 

Table 4: Accuracy comparison for wetland-upland discrimination using photo-interpreted validation 

data. Class agreement between the two datasets is indicated by the shaded cells in the table. 

Table 5: Accuracy comparison between the image-interpreted validation class and the mapped wetland 

class in the updated NWI data. Class agreement between the two datasets is indicated by the shaded 

cells in the table. 

Table 6: Comparison of present-day accuracy of the original NWI to the accuracy of the updated NWI. 
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FIGURE CAPTIONS 

Figure 1: The project area includes thirteen counties in east-central Minnesota, USA. 

Figure 2: Illustration of the image classification process showing (a) the infrared band from the spring 

imagery, (b) the lidar hillshade DEM, (c) initial image objects, (d) refined multi-resolution objects, and (e) 

the final wetland inventory map.  

Figure 3: A comparison of the original NWI wetland boundaries (dashed black line) to the updated 

wetland boundaries (white line) shown on top of a lidar hillshade layer.  

Figure 4 (electronic supplemental material - online only): A comparison of the original NWI wetland 

boundaries (green) to the updated wetland boundaries (blue) shown on top of a false color-infrared 

aerial image. 
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Figure 1: The project area includes thirteen counties in east-central Minnesota, USA. 
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Figure 2: Illustration of the image classification process showing (a) the infrared band from the spring imagery, (b) the lidar hillshade DEM, (c) 
initial image objects, (d) refined multi-resolution objects, and (e) the final wetland inventory map.
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Figure 3: A comparison of the original NWI wetland boundaries (dashed black line) to the updated 
wetland boundaries (white line) shown on top of a lidar hillshade layer.  

 

Figure 4 (electronic supplemental material - online only): A comparison of the original NWI wetland 
boundaries (green) to the updated wetland boundaries (blue) shown on top of a false color-infrared 
aerial image. 
 

 


