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Abstract Topography has been traditionally used as a surro-
gate to model spatial patterns of water distribution and variation
of hydrological conditions. In this study, we investigated the use
of light detection and ranging (lidar) data to derive two Single
Flow Direction (SFD) and five Multiple Flow Direction (MFD)
algorithms in the application of the compound topographic
index (CTI) for mapping wetlands. The CTI is defined here as
ln [(α)/(tan (β)], where α represents the local upslope contrib-
uting area and β represents the local slope gradient. We evalu-
ated the following flow direction algorithms: D8, Rho8, DE-
MON, D-∞MD-∞, Mass Flux, and FD8 in three ecoregions in
Minnesota. Numerous studies have found that MFD algorithms
better represent the spatial distribution of water compared to
SFD algorithms. CTImapswere compared to field collected and
image interpreted reference data using traditional remote sensing
accuracy estimators. Overall accuracy results for the majority of
CTI based algorithms were in the range of 81–92 %, with low
errors of wetland omission. The results of this study provide
evidence that 1) wetlands can be accurately identified using a
lidar derived CTI, and 2) MFD algorithms should be preferred
over SFD algorithms in most cases for mapping wetlands.

Keywords Wetlandmapping . Lidar . Flow direction
algorithm . Compound topographic index

Introduction

Wetlands are distinctive ecosystems as a result of their hydro-
logic conditions, chemistry, and transitional bridge between
terrestrial and aquatic life.

Wetlands benefit human society and nature in numerous
ways. These include support of wildlife habitat, fishing activ-
ities and educational activities, protection of shorelines, re-
duction of negative effects of floods and drought, recharge of
groundwater aquifers, cleansing of contaminated waters and
climate regulation. The prairie pothole region of southern and
western Minnesota, for example, is one of the critical water-
fowl nesting and stopover points in the United States.
Peatlands, which are abundant in northern Minnesota, have
the ability to regulate climate change through carbon seques-
tration. Peatlands may hold up to 540 gigatons of carbon,
representing in approximately 1.5 % of the total estimated
global carbon storage (Bridgham et al. 2008; Anteau and
Afton 2009; Charman 2009).

Despite their benefits, many wetlands have not been
protected but instead have been drained and filled for agricul-
tural or urban development. For example, the United States
has lost about 53 % of the original wetlands since the mid-
1800s. Those wetlands were converted to agricultural, urban
and other commercial land uses (Dahl and Johnson 1991;
Stedman and Dahl 2008). Similar change was seen in the state
of Minnesota from the 1780s to the mid-1980s where about
42 % of the original wetlands were drained, ditched, filled and
converted to other land uses (Dahl 2006). The vast majority of
wetland loss occurred in the southern and western agricultural
regions of the state while the northern forest region retains
more than 90 % of its wetlands (Prince 2008).

Currently the most widely used quantitative source of
wetland inventory in the majority of the United States, includ-
ing Minnesota, is the National Wetlands Inventory (NWI).
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However, many NWI maps are outdated, having been com-
pleted in the late 1980’s, and many changes in the landscape
have occurred. Furthermore, the NWImaps were created from
aerial imagery (some black and white) collected from 1979
to1988 (LMIC 2007). Thus, it is important and necessary to
update wetland inventories with accurate locations of wet-
lands. An updated wetland inventory would greatly assist
local and state government units in making better decisions
for the preservation, protection and restoration of these valu-
able ecosystems.

The use of topography data provides a fast and cost-
effective way to analyze watershed morphology, spatial dis-
tribution of soil moisture, and computation of terrain indices
useful for improving river, lake, and wetland identification
(Rodhe and Seibert 1999; Chaplot and Walter 2003; Sørensen
et al. 2006; Corcoran et al. 2011). Digital Elevation Models
(DEMs) are preferred to calculate terrain attributes because of
the visual representation of these features and the easy com-
puter implementation of algorithms to calculate terrain fea-
tures (Guntner et al. 2004; Sørensen and Seibert 2007; Shoutis
et al. 2010; Knight et al. 2013).

For example, flow direction algorithms can be calculated
directly from DEMs to determine in which direction the
outflow from a given cell will be distributed to one or more
neighboring downslope cells. Flow direction algorithms are
important for the calculation of topographic indices such as
the Compound Topographic Index (CTI), also known as the
Topographic Wetness Index (TWI). One of the valuable ben-
efits of using indices such as the CTI is the ability to represent
the distribution and flow of water (saturated vs. non-saturated
areas) based only on topographic data (Moore et al. 1993;
Guntner et al. 2004; Grabs et al. 2009). The CTI can identify
parts of the landscape where sufficient wetness could allow
the formation of wetlands. A potential issue with surface flow
algorithms is that they do not detect wet areas that are not
formed in topographic depressions such as groundwater dis-
charge zones which often occur on slopes. These hydrologic
settings may be more difficult to detect with flow direction
algorithms in the application of the CTI for mapping rarer
wetland types such as fens.

The CTI is based on the formula proposed by Beven and
Kirkby (1979): CTI=ln [(α)/(tan (β)], where represents the
local upslope contributing area per unit contour draining through
each cell, and β represents the local slope gradient. Upslope
contributing areas are calculated using a flow direction algo-
rithm; thus, the choice of flow direction algorithm is important
because it influences the spatial pattern of the CTI values.

Flow direction algorithms are divided in two main groups
based on how they distribute flow from one grid cell to another
cell (Erskine et al. 2006; Gruber and Peckham 2008; Wilson
et al. 2008). The first group consists of single flow direction
(SFD) algorithms, which allow flow to pass to only one neigh-
boring cell downslope. The following algorithms are examples

of the SFD group: the Deterministic D8 algorithm proposed by
O’Callaghan andMark (1984), and the random single direction
algorithm Rho8 described by Fairfield and Leymarie (1991).

The second group consists of multiple flow direction (MFD)
algorithms, which allow flow to pass to more than one neighbor
cell downslope. This group is further subdivided into algorithms
that allow flow to be distributed to a maximum of two, three,
four, and eight neighbor cells downslope. Examples of algo-
rithms that allow flow to be distributed to a maximum of two
cells include the Digital Elevation Model Network (DEMON)
proposed by Costa-Cabral and Burges (1994), and the Determin-
istic Infinite (D ∞) algorithm suggested by Tarboton (1997).

The Mass Flux (MF) algorithm proposed by Gruber and
Peckham (2008) is an example of algorithms that allow flow to
pass into a maximum of four neighbors cells. Examples of
algorithms that allow flow to be distributed to a maximum of
eight neighbor cells include the Triangular Multiple Flow direc-
tion algorithm (MD ∞) proposed by Seibert and McGlynn
(2007), and the Divergent Flow algorithm (FD8) proposed by
Freeman (1991). Studies related to hydrological applications
across disciplines have used SFD algorithms such as the D-8
more often thanMFD algorithms. Although several studies have
confirmed that MFD algorithms can provide more accurate
results in calculating the distribution and flow of water, the use
of SFD algorithms continues (Wilson and Gallant 2000; Zhou
and Liu 2002; Pan et al. 2004).

Numerous studies have shown differences between SFD
and MFD algorithms for stream network applications and
statistical distribution of primary and secondary terrain attri-
butes (Tarboton 1997; Guntner et al. 2004). However, little
research has been done to assess the accuracy of these types of
algorithms using high resolution elevation data in the appli-
cation of topographic derivatives such as CTI for identifying
wetlands in the upper Midwest, U.S.A. In recent years, the
acquisition of high resolution elevation data using Light De-
tection and Ranging (lidar) has increased.

Lidar is an active remote sensing technology that uses laser
light to produce accurate land elevation data. Numerous stud-
ies have confirmed the importance of lidar data to improve the
process of mapping wetlands (Jenkins and Frazier 2010;
Knight et al. 2013; Lang et al. 2013). Lang and McCarty
(2009) mapped forested wetlands using lidar intensity and
obtained a high overall acccury of 96.3 %. They compared
their lidar intensity results to NIR photointerpretation of wet-
lands, which had an overall accuracy of 70 % for the same
area. Antonarakis et al. (2008) also achieved high overall
accuracy results of 95–99 % for mapping open water features
using a combination of lidar intensity and lidar derived terrain
attributes. Thus, the goal of this paper was to assess the
suitability of a selection of two Single Flow Direction (SFD)
and fiveMultiple Flow Direction (MFD) algorithms for use in
creating several CTIs from lidar data for wetland mapping in
three ecoregions in the state of Minnesota, U.S.
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Study Areas Description

This study was conducted in three study areas within three
different ecoregions in the state of Minnesota (Fig. 1). The first
study area is located in the Northern Glaciated Plains ecoregion
and consists of five watersheds of a 12-digit-level Hydrologic
Unit Code (i.e., HUC-12). The five watersheds include Big
Stone Lake, Big Stone Lake State Park, Barry Lake, Fish Creek,
and Salmonson Point, all within Big Stone County. The total
area of the five watersheds together is 293 km2 with primarily
loamy soils and a mixture of well and poorly drained soils. Land
use within these watersheds is predominantly agricultural with
grain crops, including corn and soybeans. The elevation of these
watersheds ranges from 290 to 364 m above sea level.

The average annual precipitation in this area is 640 mm
with 360 mm occurring in the growing season of May to
September. These watersheds are part of the prairie pot-
hole region in Minnesota, characterized by numerous
small depressional wetlands known as prairie potholes.
Wetlands in this ecoregion are of vital importance for
waterfowl habitat, storage of surface water, groundwater

recharge and discharge, and reduction in the risk of down-
stream flooding (Winter and Rosenberry 1995; LaBaugh
et al. 1998).

The second study area is located in the Central Hard-
wood Forest ecoregion and contains five watersheds of a
12-digit level Hydrologic Unit Code (i.e., HUC-12). The
five watersheds include Upper Lake Minnetonka, Riley
Creek, Purgatory Creek, Lower Lake Minnetonka and the
City of Shakopee-Minnesota River. These watersheds are
located within Hennepin and Carver counties. The total
area of the five watersheds is 69 km2, with fine to mod-
erately coarse texture and well drained soils. Land use is
dominated by urban development including medium den-
sity residential, with some areas for commercial growth
and open space. The elevation across these watersheds is
209–332 m above sea level. The average annual precipi-
tation is 762 mm while during the growing season (May
to September) it is 508 mm. The majority of the wetlands
types in these watersheds are shallow marshes and wet
meadows (Ci ty o f Chanhassen Sur face Wate r
Management Plan 2006).

Fig. 1 Three study areas located in three different ecoregions in the state of Minnesota, U.S.A
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The third study area is located within the Northern Lakes
and Forest ecoregion and includes four watersheds of a 12-
digit level Hydrologic Unit Code (i.e., HUC-12). The four
watersheds include Big Lake, the City of Cloquet-St. Louis
River, Otter Creek and the Thompson Reservoir-St. Louis
River. These watersheds are located between St. Louis and
Carlton counties. The total area of the four watersheds togeth-
er is 265 km2 with poorly drained soils and near-surface water
tables. The main land use in these watersheds is mixed forest-
ed land dominated by conifer forest, mixed hardwood-conifer
forest and conifer bogs and swamps. The elevation in these
areas ranges between 307 and 436 m above sea level. The
average annual precipitation is 710 mm and during the grow-
ing season (May to September) the average precipitation is
440 mm. Wetlands types in these watersheds are primarily
forested wetlands covered by coniferous and tall shrubby
vegetation (Minnesota Department of Natural Resources
2010).

Lidar Data

We used a 3 m lidar DEM for each study area to compute
seven different flow direction algorithms. The 3 m lidar DEM
for the Northern Glaciated Plains study area was obtained
from the International Water Institute (IWI) lidar download
portal. The DEM was created by interpolating the bare earth
point LAS files using the ‘Raster to ASCII’ command in the
Environmental Systems Research Institute (ESRI) ArcGIS
software.

Collection of the lidar data used to create the DEM oc-
curred during the spring of 2010 (leaf-off conditions) by
Fugro Horizons Inc. with an average post spacing of 1.35 m.
The lidar data horizontal accuracy was of +/− 1 m (95 %
confidence level), with a vertical accuracy RMSE of 15.0 cm.

The 3 m lidar DEM for the Central Hardwood Forest study
area was downloaded from the Minnesota Geospatial Infor-
mation Office (MnGeo). This lidar DEMwas produced by the
Minnesota DNR by extracting bare earth points from the point
cloud data. The DEM was hydro flattened using the edge of
the water breaklines. Collection of the lidar point cloud data
took place between Nov 11 and Nov 17, 2011 by Fugro
Horizons Inc. with an average post spacing of 1.5 m. The
horizontal accuracy for these data was of +/− 0.6 m (95 %
confidence level), and a vertical accuracy RMSE of 5 cm.

The 3 m lidar DEM for the Northern Lakes and Forest
study area was also acquired from the Minnesota Geospatial
Information Office (MnGeo). The 3 m DEMwas produced by
the Minnesota DNR by extracting bare earth points from the
point cloud data. The DEMwas also hydro flattened using the
edge of the water breaklines. Acquisition of the lidar data took
place between May 3 and May 5, 2011 by Woolpert Inc. with
an average post spacing of 1.5 m. The horizontal accuracy of

the lidar data was +/− 1.2 m (95 % confidence level), with a
vertical accuracy RMSE of 5 cm.

Analysis Methods

This section is composed of three subsections: The first de-
scribes the pre-processing steps applied to the lidar DEMs.
The second describes the steps and software used to calculate
each of the lidar derived terrain attributes required for the CTI
calculation CTIs. The third explains the accuracy assessment
procedures used to assess the results for each study area.

Lidar DEM Pre-Processing

Each lidar DEMwas subset to a shapefile watershed boundary
that was obtained from the Minnesota Department of Natural
Resources (DNR). Sinks or pits that did not have a surface
water outlet were moderately filled to avoid irregularities that
could interfere with correct hydrologic flow (trapping flow).
We used the tool fill sinks XXL implemented in the free open
source software System for Automated Geoscientific Analysis
(SAGA) v. 2.1.0. We chose this tool because it offers the
option to fill sinks fully or partially by keeping a minimum
slope gradient along the flow path.

Otherwise, if no minimum slope gradient value was spec-
ified, all the sinks would be filled to the spill elevation which
would create completely flat areas. Due to the high resolution
of our lidar DEMs we avoided filling surface depressions
completely by preserving a minimum slope gradient of
0.001 between cells. The resultant sink-moderately-filled
DEM for each study area was used to compute the required
terrain attributes for calculation of the upslope contributing
areas.

Derived Terrain Surfaces

The following flow direction algorithms were implemented in
different software packages for the computation of seven
upslope contributing areas: The D8, Rho8 and DEMON al-
gorithms were implemented using the SAGA software; the
FD8 and MD-∞ algorithms were implemented using
Whitebox Geospatial Analysis Tools v. 1.0.7 open source
software; the Mass Flux algorithm was implemented using
the River Tools v. 3.0.3, GIS software; the D∞ algorithm was
implemented using the Terrain Analysis Using Digital Eleva-
tion Models (TAUDEM) v. 5.0 toolbox in ArcGIS 9.3.1; and
the seven upslope contributing areas for each study area were
used to calculate the seven CTIs in ArcGIS v. 10.1.

We computed a slope grid in degrees from the partially pre-
filled DEM using the spatial analyst tool in ArcGIS v. 10.1
and then converted to radians using the raster calculator. The
method used in ArcGIS to compute the slope is the average
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maximum technique, where the maximum rate of change in
value from a cell to its neighbors is calculated using a 3×3 cell
neighborhood around the center grid cell (Burrough and
McDonell 1998).

We modified the resultant slope by adding a minimum
value of 0.0001 to avoid division by zero for CTI calculations.
The raster calculator in ArcGIS v. 10.1 was used to modify the
slope and impose the minimum value. Finally, we calculated
all the CTIs based on the formula proposed by Beven and
Kirkby (1979): CTI=ln [(α)/(tan (β)]. The CTI computations
were carried out in ArcGIS v. 10.1 using the raster calculator
from the Spatial Analyst toolbox.

Accuracy Assessment

We evaluated the CTI results for each study area based on
traditional accuracy assessment methods, including error ma-
trices, overall accuracy, producer’s accuracy, user’s accuracy,
and kappa statistic (k-hat) for upland and wetland classes. We
also executed a significance test of error matrices known as
the Z Pair-Wise statistical test described by Congalton and
Green (2009). This Z-test was used to determine whether there
was a statistically significant difference between the various
CTIs at an alpha level of 0.05. The Z-test was also performed
between every CTI and the NWI wetland map using the same
classification scheme (upland/wetland).

We thresholded the CTI results into two classes: uplands
and wetlands. The threshold values were determined
through a series of trial-and-error experiments, where sev-
eral CTIs across the three different ecoregions were
assessed against field data collection and photointerpreta-
tion reference points. Results indicated that the most com-
mon value for separating upland from wetlands using a 3 m
lidar CTI was always the value closest to the mean value of
the entire range.

The CTIs and NWI were assessed against a set of indepen-
dent randomly generated sample points for each study area.

These reference data used for the Northern Glaciated Plain
and Central Hardwood Forest study areas were collected from
a few sources that included: randomly generated field sites
visited by trained field crews in the summers of 2009 and
2010, plots generated by the MN Department of Natural
Resources Wetland Status and Trend Monitoring Program
(WSTMP) using centroids from polygons of 2006 and 2008
updates, and randomly generated points using photointerpre-
tation by our experienced analyst.

The reference data used for the Central Hardwood Forest
study area was developed by the City of Chanhassen using a
combination of photo-interpretation and field data collection
during the fall of 2004, and the growing season of 2005. The
field data collected for the three study areas contained the
following information: Plant type and percent coverage,
land-cover/land-use type, UTM coordinates, 5–6 photos per
site, and the Cowardin wetland type (Cowardin et al. 1974).
Upland types included crop fields, other agriculture, forests,
grasslands, urban areas, construction areas, bare areas, and
others. We used 2000 reference data points for the Northern
Glaciated Plains study area, 9,994 for the Central Hardwood
Forest study area and 2,000 for the Northern Lakes and Forest
study area.

Results

Accuracy assessment results and significance tests of the three
study areas are summarized in Tables 1, 2, 3, 4, 5, and 6. Maps
of the seven CTIs and NWI wetland/upland classification are
displayed in Figs. 2, 3, 4, 5, 6, and 7. Overall accuracy results
for the majority of CTIs across the three study areas were in
the range of 81–92 % with low errors of wetland omission.

Wetlands larger than 0.20 ha (0.5 acres) throughout the
three study areas were identified by all the algorithms, with
producer’s and user’s accuracies in the range of 67–97 % and
65–98 %, respectively.

Table 1 Accuracy estimators of the seven CTIs algorithms and the NWI for the Northern Glaciated Plains study area (Classification scheme:
wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 6.0 92 87 98 97 87 0.84

Rho8 6.7 71 70 72 67 75 0.42

DEMON 8.1 92 87 97 96 88 0.84

D-∞ 7.2 92 87 97 97 87 0.84

MD-∞ 6.1 92 87 97 97 87 0.83

Mass Flux 6.1 91 98 85 85 98 0.82

FD8 11.0 86 87 85 82 89 0.71

NWI 1 88 87 89 87 88 0.76

Total # points used for the accuracy assessment: 2000
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Also, a comparison assessment of the seven CTIs and the
original NWI was performed for each study area, using the
same two classes (wetland/upland). The comparison assess-
ment was done using the kappa-statistic (Z- test) proposed by
Congalton and Green (2009). The majority of the CTIs based
flow direction algorithms derived from lidar data for identify-
ing wetlands; produced higher accuracy results compared to
the NWI results that were in the range of 75–88 % for overall
accuracy, 73–97 % for user’s accuracy and 71–87 % for
producer’s accuracy across the three study areas.

Results for the Northern Glaciated Plains Study Area

Detailed accuracy assessment results of the sevenCTIs algorithms
and NWI results of two classes (wetland/upland) are reported in
Table 1. The overall accuracies for the CTIs evaluated in this area
were in the range of 71–92 %, with overall kappa scores in the
range of 0.42–0.84. Producer’s and user’s accuracies for the CTI’s
were in the range of 67–97 % and 70–98 % respectively.

The majority of CTIs, with the exception of the CTI Rho8,
showed low errors of commission and omissions for the wetland
class. The NWI accuracy assessment results were lower than the
majority of CTIs for predicting wetland locations in this study
area. Table 2 displays only the significance test (Z-test) results of
those CTI and NWI results that were found to be statistically
different at a 95% confidence level. These Z-test results revealed
that the CTI FD8, CTI Rho8 and NWI maps were significantly
different compared to every CTI evaluated.

This statistical difference for the CTI FD8, CTI Rho8 and
NWI suggests that the other algorithms are more suitable for
identifying wetland occurrences in this ecoregion.

Avisual comparison of the seven CTI algorithms and NWI
polygons for a small portion of the Northern Glaciated Plains
study area are presented on Fig. 2.

This qualitative comparison revealed more details of the differ-
ences between the algorithms and the original NWI polygons for
representingflowwaterdistribution inwetlands in thatarea.Figure3
illustrates a Color-Infrared (CIR)map and a CTImap for this entire
studyarea.Overall, theD8,D-∞, andMassFluxCTIswere theonly
algorithms for this study area that showed excellent agreementwith
the reference data in the visual and quantitative assessment,with the
highest overall accuracy results in the range of 91–92 %.

Results for the Central Hardwood Forest Study Area

Accuracy assessment results of the seven CTIs algorithms and
NWI results of two classes (wetland/upland) for this study
area are presented in Table 3.

Table 2 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Northern Glaciated Plains study area (Classification
scheme: wetland/upland)

CTI type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.84 vs. 0.42 17.6*

D8 vs. FD8 0.84 vs. 0.71 6.7*

D8 vs. NWI 0.84 vs. 0.76 4.5*

Rho8 vs. DEMON 0.42 vs. 0.83 17.5*

Rho8 vs. D-∞ 0.42 vs. 0.84 17.6*

Rho8 vs. MD-∞ 0.42 vs. 0.83 17.2*

Rho8 vs. Mass Flux 0.42 vs. 0.82 16.6*

Rho8 vs. FD8 0.42 vs. 0.71 10.9*

Rho8 vs. NWI 0.42 vs. 0.76 13.2*

DEMON vs. FD8 0.83 vs. 0.71 6.5*

DEMON vs. NWI 0.83 vs. 0.76 4.3*

D-∞ vs. FD8 0.84 vs. 0.71 6.6*

D-∞ vs. NWI 0.84 vs. 0.76 4.4*

MD-∞ vs. FD8 0.83 vs. 0.71 6.2*

MD-∞ vs. NWI 0.83 vs. 0.76 4.0*

Mass Flux vs. FD8 0.82 vs. 0.71 5.6*

Mass Flux vs. NWI 0.82 vs. 0.76 3.4*

Fd8 vs. NWI 0.71 vs. 0.76 2.24*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level

Table 3 Accuracy estimators of the seven CTIs algorithms and the NWI for the Central Hardwood Forest study area (Classification scheme:
wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 6.1 88 88 89 89 87 0.77

Rho8 5.5 72 71 74 75 70 0.45

DEMON 7.3 85 85 85 85 85 0.71

D-∞ 5.4 86 82 92 93 79 0.72

MD-∞ 5.1 87 87 87 87 87 0.74

Mass Flux 5.0 85 84 87 87 84 0.71

FD8 5.6 70 70 70 71 70 0.41

NWI 1 85 97 77 71 98 0.70

Total # points used for the accuracy assessment: 9994
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Overall accuracy percentages for the CTIs assessed in this
study area were in the range of 70–88 %, with overall kappa
scores in the range of 0.41–0.77. Producer’s and user’s accu-
racies for the CTI’s were in the range of 71–93 % and 70–
88 %, respectively. The majority of CTI algorithms excluding
the Rho8 and FD8 showed low errors of commission and
omissions for the wetland class. NWI producer’s accuracy

was relatively low compared to the majority of CTIs, which
resulted in higher rates of wetland omission in this area.
Table 4 displays the significance test (Z-test) results of those
CTIs and NWI maps that were found to be significantly
different at a 95 % confidence level.

The CTI FD8, CTI Rho8 and CTI D8 were found to be
statistically significant compared to the rest of the CTI and
NWI results. A detailed visual comparison of the seven algo-
rithms, wetland polygons created by the City of Chanhassen,
and NWI polygons for a small portion of this study area is
presented in Fig. 4. This visual comparison exposes many
differences between the polygons created by the City of
Chanhassen, the NWI polygons and the straight flow water
patterns of the single flow direction algorithms. A map of the
CTI and CIR image for the complete study area is shown in
Fig. 5.

In general, out of all the algorithms tested, the D-∞ and
MD-∞ CTIs indicated excellent agreement with the reference
data in the visual and quantitative assessment for this study
area. These CTIs had high overall accuracy results in the range
of 86–87 %, with low errors of wetland omissions and
commission.

Results for the Northern Lakes and Forest Study Area

Table 5 shows accuracy assessment results for the two classes
(wetland/upland) for this study area. Overall accuracy results
for the CTI’s based algorithms evaluated in this study area
were in the range of 69–82 % with kappa scores between 0.38
and 0.64. Producer’s and user’s accuracies for the CTI’s were
in the range of 80–86 % and 65–81 %, respectively. NWI
accuracy assessment estimators were lower compared to the
majority of the CTI algorithms for this area. Lower accuracy
assessment results of the NWI revealed the inaccuracy of the
polygons in this forested area for identifying wetlands, partic-
ularly forested wetlands.

Table 6 displays significance tests (Z-tests) for only CTI
algorithms that were found to be statistically different at a

Table 4 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Central Hardwood Forest study area (Classification
scheme: wetland/upland)

CTI type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.77 vs. 0.45 28.7*

D8 vs. DEMON 0.77 vs. 0.71 6.21*

D8 vs. D-∞ 0.77 vs. 0.72 4.7*

D8 vs. MD-∞ 0.77 vs. 0.74 2.9*

D8 vs. Mass Flux 0.77 vs. 0.71 6.0*

D8 vs. FD8 0.77 vs. 0.41 31.9*

D8 vs. NWI 0.77 vs. 0.70 7.6

Rho8 vs. DEMON 0.45 vs. 0.71 22.5*

Rho8 vs. D-∞ 0.45 vs. 0.72 24.15*

Rho8 vs. MD-∞ 0.45 vs. 0.74 25.7*

Rho8 vs. Mass Flux 0.45 vs. 0.71 22.7*

Rho8 vs. FD8 0.45 vs. 0.41 3.18*

Rho8 vs. NWI 0.45 vs. 0.70 21.6*

DEMON vs. MD-∞ 0.71 vs. 0.74 3.2*

DEMON vs. FD8 0.71 vs. 0.41 25.7*

D-∞ vs. FD8 0.72 vs. 0.41 27.4*

D-∞ vs. NWI 0.72 vs. 0.70 2.8*

MD-∞ vs. Mass Flux 0.74 vs. 0.71 3.0*

MD-∞ vs. FD8 0.74 vs. 0.41 28.9*

MD-∞ vs. NWI 0.74 vs. 0.70 4.5*

Mass Flux vs. FD8 0.71 vs. 0.41 25.9*

Fd8 vs. NWI 0.41 vs. 0.70 24.8*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level

Table 5 Accuracy estimators of the sevenCTIs algorithms and theNWI for the Northern Lakes and Forest study area (Classification scheme: wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 5.2 82 80 84 86 78 0.64

Rho8 6.1 69 65 77 84 54 0.38

DEMON 7.1 75 73 77 80 70 0.50

D-∞ 7.0 81 81 81 81 81 0.61

MD-∞ 5.5 82 80 83 84 80 0.63

Mass Flux 6.0 81 80 81 82 79 0.61

FD8 5.8 81 79 83 83 78 0.61

NWI 1 75 73 78 80 70 0.50

Total # points used for the accuracy assessment: 2000
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95 % confidence level. The CTI FD8, CTI Rho8 and CTI D8
were found to be statistically significant different compared to
the rest of the CTI and NWI results for mapping wetlands.
Visual comparisons of the seven CTI algorithms and NWI
polygons for a small portion of this study area are shown in
Fig. 6. This visual comparison revealed the differences be-
tween the algorithms and NWI polygons for predicting for-
ested wetlands. Figure 7 shows two maps: the CTI and CIR
image, for the whole study area. In general, the D-∞, MD-∞,
and Mass Flux CTIs were the only algorithms that had excel-
lent agreement with the reference data in the visual and
quantitative assessment for this study area. These three algo-
rithms had the highest overall accuracy results in the range of
81–82 %, with relatively low errors of wetland omissions and
commission.

Discussion

We compared and evaluated seven CTI based algorithms
derived from lidar DEMs for identifying wetlands across three
different ecoregions in Minnesota. The computation of the
CTI offered a practical and fast method to identify wetlands
greater than 0.20 ha. All CTI based maps showed a relatively
high overall percentage of agreement with the reference data
for wetland and upland classes (69–92 %). Results of this

study demonstrate that lidar derived CTIs can significantly
improve the accuracy of wetlands classification compared to
the NWI across different ecoregions in Minnesota.

Although a direct comparison of the NWI and our CTI
results may be not fair because of the differences in data types
and techniques used to create these two wetland maps; the
CTI-based approach developed here provides an alternative
efficient and accurate method to update wetland maps. Avail-
able updated wetland maps would be valuable for many
governmental and non-governmental entities that currently
only used NWI maps as a tool and resource to monitor and
take decisions regarding wetlands.

Our results showed the importance of choosing the correct
flow direction algorithm for identifying wetlands location
visually and quantitatively. Visual comparison of the seven
CTI algorithms in the three study areas revealed noticeable
differences that are partially seen in the quantitative accuracy
assessment analysis for some algorithms.

We speculate that the quantitative accuracy assessment anal-
ysis did not show strong differences for all the algorithms
because of the type of reference data used to assess these
algorithms: points instead of polygon reference data types.
For example, the D8 SFD algorithm exhibits similar quantita-
tive accuracy results compared to three of the MFD algorithms
(D-∞, MD-∞, Mass Flux) in the three study areas; nevertheless,
the qualitative visual analysis exposes major difference related
to unrealistic parallel flow patterns of the SFD algorithms (D8
and Rho8) for differentiating wetlands from uplands.

Similarities and differences between the two groups of
algorithms are also highlighted in the way each of these
algorithms tends to distribute the flow and accumulation of
water in wetlands and uplands across the three study areas.

The Northern Glaciated Plains study area exhibited simi-
larities in the way the majority of the CTI based algorithms
represented water flow and accumulation for wetland map-
ping. For example, the D8, D-∞, and Mass Flux CTIs showed
parallel flow patterns and similarly high accuracy assessment
results. Low topography relief and presence of more concave
hillslopes in this study area were the two main factors that
favored greater flow convergence for the majority of wetlands
located in this study area. These factors may explain the
similarities in performance of the majority of flow direction
algorithms in this area. Additionally, this study area had the
highest overall accuracy, user’s and producer’s accuracy re-
sults compared to the other two study areas.

High accuracy results can be explained primarily be-
cause of the type of wetlands found in this study area,
known as prairie pothole wetlands or depressional wet-
lands (LaBaugh et al. 1998). The majority of flow accu-
mulation that contributes to the hydrology of these wet-
lands tends to occurs in these topographic depressions
that can be identified efficiently using high resolution
elevation data. As a result, the CTI method tested in this

Table 6 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Northern Lakes and Forest study area (Classification
scheme: wetland/upland)

type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.64 vs. 0.38 9.78*

D8 vs. DEMON 0.64 vs. 0.50 5.43*

D8 vs. NWI 0.64 vs. 0.50 5.24*

Rho8 vs. DEMON 0.38 vs. 0.50 4.18*

Rho8 vs. D-∞ 0.38 vs. 0.61 8.84*

Rho8 vs. MD-∞ 0.38 vs. 0.63 9.43*

Rho8 vs. Mass Flux 0.38 vs. 0.61 8.59*

Rho8 vs. FD8 0.38 vs. 0.61 8.80*

Rho8 vs. NWI 0.38 vs. 0.50 4.37*

DEMON vs. D-∞ 0.50 vs. 0.61 4.52*

DEMON vs. MD-∞ 0.50 vs. 0.63 5.10*

DEMON vs. Mass Flux 0.50 vs. 0.61 4.28*

DEMON vs. FD8 0.50 vs. 0.61 4.48*

D-∞ vs. NWI 0.61 vs. 0.50 4.34*

MD-∞ vs. NWI 0.63 vs. 0.50 4.91*

Mass Flux vs. NWI 0.61 vs. 0.50 4.10*

Fd8 vs. NWI 0.61 vs. 0.50 4.30*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level
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study is an efficient mapping technique to identify these
wetlands because of the topographic nature of this index.

For the Central Hardwood Forest study area marked visual
differences between the SFD and MFD algorithms were

Fig. 3 aCIR aerial imagery 2011
map, and b CTI map for the
Northern Glaciated Plains study
area

Fig. 2 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2011, c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Northern
Glaciated Plains study area.
Higher CTI values represent
water accumulation (potential
wetland location) and lower CTI
values represent dryness
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displayed in this study. For example, parallel flow patterns
were very evident on the D8, Rho8 and DEMON CTIs. The

Rho8 showed the lowest accuracy assessment results for
classifying wetlands and uplands.

Fig. 5 aCIR aerial imagery 2008
map, and b CTI map for the
Central Hardwood Forest study
area

Fig. 4 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2008 and wetland
polygons created by the City of
Chanhassen, c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Central
Hardwood Forest study area.
Higher CTI values represent
water accumulation (potential
wetland location) and lower CTI
values represent dryness
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This study area had the second relatively high overall
accuracy, user’s and producer’s accuracy results compared to
the other two study areas. Visually and statistically the best

algorithms for mapping wetlands in this area were the D-∞
and MD-∞ CTIs. Marked differences between algorithms in
this study area can be attributed to the presence of medium to

Fig. 7 aCIR aerial imagery 2009
map, and b CTI map for the
Northern Lakes and Forest study
area

Fig. 6 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2009 , c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Northern Lakes
and Forest study area. Higher CTI
values represent water
accumulation (potential wetland
location) and lower CTI values
represent dryness

Wetlands



high topography relief and more convex hillslopes near or in
the type of existing wetlands in this area.

The majority of existing wetlands include open water,
shallow and deep marshes, and unconsolidated bottom
(Knight et al. 2013). Thus, CTIs based on MFD algorithms
were more suitable than SFD algorithm for this area to repre-
sent realistic patterns of wetlands areas and greater flow of
divergence distribution of water.

The Northern Lakes and Forest study area study area had
the lowest overall accuracy, user’s accuracy, and producer’s
accuracy results for all the CTIs maps compared to the other
two study areas. This can be explained because of the wet-
lands types located in this area which includes calcareous fens,
sedge meadows, hardwood wetlands, coniferous swamps, and
coniferous bogs. The majority of these existing wetlands in
this area are groundwater-fed wetlands, and generally high in
the landscape.

For example, fens wetlands are groundwater discharge
wetlands that occur along topographic or geologic breaks or
where groundwater aquifers are exposed near the surface.
Thus, these types of wetlands are less sensitive to topography
influence and inundation events as they are located at an
elevation above floodplain.

Nevertheless, of all the CTI’s based algorithms, the MFD
algorithms performed better at visually separating uplands
from wetlands. The D-∞, MD-∞, and Mass Flux CTIs had
the highest accuracy results for separating wetlands from
uplands. The threeMFD algorithms mentioned above allowed
for a more divergent and smoother distribution of water in
very pronounced convex-steep hillslopes near or close to these
wetlands.

Lang et al. (2013) reinforces our results regarding the
accuracy and preferences for MFD over SFD algorithms for
identifying wetland locations. The Lang et al. (2013) results
indicate that the FD8 CTI multiple flow direction algorithms
derived from lidar data performed better than other non-
distributed flow direction algorithms including the D8 for
identifying locations of forested wetlands in the Coastal Plain
of Maryland.

Our significance Z-test results for the three study areas
confirmed the significant differences between the SFD algo-
rithms and MFD, particularly for the Rho8 CTI, across the
three study areas. CTI based algorithms (D8, D-∞, MD-∞,
Mass Flux D, and FD8) wetland/upland classification maps in
general were significant improvements over the NWI map for
two of our study areas. However, for the Central Hardwood
Forest study area, the CTI based algorithms (D8, D-∞, MD-∞,
andMass Flux D) outperformed only the NWI. NWI results in
this area had high errors of omission because of rapid urban
development over the past 6 years.

Our research demonstrated the outdated nature of many
NWI maps in Minnesota. Still, many of these maps are used
by governmental and non-governmental policymakers

for wetland management and policy development for
lack of better data. Improved mapping accuracy will
be greatly beneficial for policymakers developing local
or regional wetland inventories, restoration or mitigation
plans and other policies.

Conclusions

Lidar derived CTIs enable a fast, efficient, and more accurate
method to estimate current wetland location compared to NWI
maps. Our results provide evidence that different wetland
types in varied ecoregions can be identified accurately using
lidar derived terrain indices. In general, the seven CTI based
algorithms were able to predict wetland locations across dif-
ferent ecoregions. However, there were statistically and visu-
ally significant differences in their performance.

Our visual comparison results revealed that CTIs based on
MFD algorithms are generally better than CTIs based on SFD
algorithms for separating wetlands from uplands. Based on
our results, we suggest the use of the following algorithms:
D-∞, MD-∞ or Mass Flux in the application of the CTI for
mapping wetlands in areas similar to the ones evaluated in this
study. The MFD algorithms represented the distribution and
accumulation of water (wetness) in wetlands in a more visu-
ally accurate form compared to SFD algorithms.

Further research is encouraged to investigate the effect of
different DEM resolutions and use of the CTI combined with
other ancillary data such as optical data for mapping wetlands.
The combination of the CTI and other ancillary data could
potentially help to identify wetlands located at an elevation
above floodplain level where elevation information alone is
not as influential as it is for depressional wetlands. For exam-
ple, organic flat wetlands and groundwater discharge-fed wet-
lands that occur along slopes including some types of fens
may require additional tools to map with greater accuracy.

Additional research is also needed to address evaluate
numerically the visual differences seen in this study from the
different flow direction algorithms. One possible approach
could be a wet area-polygon based assessment, that would
extract and measure the amount of CTI wet areas found only
in wetland references polygons.

Finally, the use of NWI maps continues across different
parts of the country because these maps are the most accessi-
ble information available. Many of these NWI maps need to
be updated. Remote sensing techniques including those based
on the CTI offer a fast, cost-effective and reliable method to
quickly identify wetland location and update such maps.

Acknowledgments This research was funded by the Minnesota Envi-
ronment and Natural Resources Trust (ENRTF), the Minnesota Depart-
ment of Natural Resources (MNDNR), and the United States Fish and
Wildlife Services (USFWS: Award 30181AJ194).

Wetlands



References

Anteau MJ, Afton AD (2009) Wetland use and feeding by lesser scaup
during spring migration across the upper Midwest, USA. Wetlands
29:704–712

Antonarakis AS, Richards KS, Brasington J (2008) Object-based land
cover classification using airborne Lidar. Remote Sensing of
Environment 112:2988–2998

BevenKJ, KirkbyMJ (1979) A physically based, variable contributing area
model of basin hydrology. Hydrological Sciences Journal 24:43–69

Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008) Rapid
carbon response of peatlands to climate change. Ecology 89:3041–3048

Burrough PA, McDonell RA (1998) Principles of geographical informa-
tion systems. Oxford University Press, New York, 190 pp

Chaplot V, Walter C (2003) Subsurface topography to enhance the
prediction of the spatial distribution of soil wetness. Hydrological
Processes 17:2567–2580

Charman DJ (2009) Peat and peatlands. Elsevier Inc, 541–548
City of Chanhassen Surface Water Management Plan (2006) In: The

second generation surface water management plan - Chanhassen,
Minnesota: http://www.ci.chanhassen.mn.us/serv/cip/swmp/
wetlandsmanagement.htm. Accessed 25 May 2013

Congalton RG, Green K (2009) Assessing the accuracy of remotely
sensed data: principles and practices, 2nd edn. CRC Press/Taylor
and Francis, Boca Raton

Corcoran JM, Knight JF, Brisco B, Kaya S, Cull A, Murnaghan K (2011)
The integration of optical, topographic, and radar data for wetland
mapping in northern Minnesota. Canadian Journal of Remote
Sensing 37(5):564–582

Costa-Cabral M, Burges SJ (1994) Digital elevation model networks
(DEMON): a model of flow over hillslopes for computation of contrib-
uting and dispersal areas. Water Resources Research 30:1681–1692

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe, 1974.
Classification of wetlands and deepwater habitats of the United
States, U.S. Department of the Interior, Fish and Wildlife Service,
Washington, D.C.

Dahl TE (2006) Status and trends of wetlands in the conterminous United
States 1998 to 2004. U.S. Department of the Interior; Fish and
Wildlife Service, Washington, D.C., p 112

Dahl TE, Johnson CE (1991) Status and trends of wetlands in the
conterminous United States, mid-1970’s to mid-1980’s. U.S. Fish
and Wildlife Service, Washington, DC, p 28

Erskine RH, Green TR, Ramirez JA, MacDonald LH (2006) Comparison
of grid-based algorithms for computing upslope contributing area.
Water Resources Research 42, W09416

Fairfield J, Leymarie P (1991) Drainage networks from grid digital
elevation models. Water Resources Research 27:709–717

Freeman GT (1991) Calculating catchment area with divergent flow
based on a regular grid. Computers and Geosciences 17:413–422

Grabs T, Seibert J, Bishop K, Laudon H (2009) Modeling spatial patterns
of saturated areas: a comparison of the topographic wetness index
and a dynamic distributed model. Journal of Hydrology 373:15–23

Gruber S, Peckham S (2008) Land-surface parameters and objects in
hydrology. In: Hengl T, Reuter HI (eds) Geomorphometry: con-
cepts, software, applications. Elsevier, Amsterdam, pp 171–194

Guntner A, Seibert J, Uhlenbrook S (2004) Modeling spatial patterns of
saturated areas: an evaluation of different terrain indices. Water
Resources Research 40, W05114

Jenkins RB, Frazier PS (2010) High-resolution remote sensing of upland
swamp boundaries and vegetation for baseline mapping and moni-
toring. Wetlands 30:531–540

Knight JF, Tolcser BT, Corcoran JM, Rampi LP (2013) The effects of data
selection and thematic detail on the accuracy of high spatial

resolution wetland classifications. Photogrammetric Engineering
and Remote Sensing 79:613–623

LaBaugh JW,Winter TC, Rosenberry DO (1998) Hydrologic functions of
prairie wetlands. Great Plains Research: A Journal of Natural and
Social Sciences 8:17–37

Land Management Information Center (LMIC) (2007) Metadata for the
National Wetlands Inventory, Minnesota

LangMW,McCarty GW (2009) Lidar intensity for improved detection of
inundation below the forest canopy. Wetlands 29:1166–1178

LangMW,McCarty GW,Oesterling R, Yeo I (2013) Topographic metrics
for improved mapping of forested wetlands. Wetlands 33:141–155

Minnesota Department of Administration (AdminMN) Office of geo-
graphic and demographic analysis state demographic center, 2010
census: Minnesota city profiles. http://www.demography.state.mn.
us/CityProfiles2010/index.html. Accessed 20 May 2013

Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute
prediction using terrain analysis. Soil Science Society of America
Journal 57:443–452

O’Callaghan JF, Mark DM (1984) The extraction of drainage networks
from digital elevation data. Computer Vision, Graphic and Image
Processing 28:328–344

Pan F, Peters- Lidar CD, Sale MJ, King AW (2004) A comparison of
geographical information system-based algorithms for computing
the TOPMODEL topographic index. Water Resources Research 40:
1–11

Prince H (2008) Wetlands of the American Midwest: a historical geogra-
phy of changing attitudes. Chicago: University of Chicago Press

Rodhe A, Seibert J (1999) Wetland occurrence in relation to topography -
a test of topographic indices as moisture indicators. Agricultural and
Forest Meteorology 98–99:325–340

Seibert J, McGlynn B (2007) A new triangular multiple flow
direction algorithm for computing upslope areas from gridded
digital elevation models. Water Resources Research 43:1–8

Shoutis L, Dunca TP, McGlyn B (2010) Terrain-based predictive model-
ing of Riparian vegetation in Northern Rocky Mountain watershed.
Wetlands 30:621–633

Sørensen R, Seibert J (2007) Effects of DEM resolution on the calculation
of topographical indices: TWI and its components. Journal of
Hydrology 347:79–89

Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topo-
graphic wetness index: evaluation of different methods based on
field observations. Hydrology and Earth System Sciences 10:101–
112

Stedman S, Dahl TE (2008) Status and trends of wetlands in the coastal
watersheds of the Eastern United States 1998 o 2004. National
Oceanic and Atmospheric Administration, National Marine
Fisheries Service and U.S. Department of the Interior, Fish and
Wildlife Service, 32 pages

Tarboton DG (1997) A new method for the determination of flow direc-
tions and upslope areas in grid digital elevation models. Water
Resources Research 33:309–319

Wilson JP, Gallant JC (2000) Secondary topographic attributes. In:
Wilson JP, Gallant JC (eds) Terrain analysis: principles and applica-
tions. Wiley, New York, pp 87–131

Wilson JP, Aggett G, Deng YX, Lam CS (2008)Water in the landscape: a
review of contemporary flow routing algorithms. In: Zhou Q, Lees
B, Tang G (eds) Advances in digital terrain analysis. Springer,
Berlin, pp 213–236

Winter TC, Rosenberry DO (1995) The interaction of ground water with
prairie pothole wetlands in the Cottonwood Lake Area, eastcentral
North Dakota, 1979–1990. Wetlands 15:193–211

Zhou Q, Liu X (2002) Error assessment of grid-based flow routing
algorithms used in hydrological models. International Journal of
Geographical Information Science 16:819–842

Wetlands

http://www.ci.chanhassen.mn.us/serv/cip/swmp/wetlandsmanagement.htm
http://www.ci.chanhassen.mn.us/serv/cip/swmp/wetlandsmanagement.htm
http://www.demography.state.mn.us/CityProfiles2010/index.html
http://www.demography.state.mn.us/CityProfiles2010/index.html

	Comparison of Flow Direction Algorithms in the Application of the CTI for Mapping Wetlands in Minnesota
	Abstract
	Introduction
	Study Areas Description
	Lidar Data
	Analysis Methods
	Lidar DEM Pre-Processing
	Derived Terrain Surfaces
	Accuracy Assessment

	Results
	Results for the Northern Glaciated Plains Study Area
	Results for the Central Hardwood Forest Study Area
	Results for the Northern Lakes and Forest Study Area

	Discussion
	Conclusions
	References


