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1. Introduction 

1.1.  Objectives 
This document is a report to the Minnesota Department of Natural Resources (MNDNR) that provides a 
review of research conducted on wetland mapping methods for the Twin Cities Metropolitan Area 
(TCMA) in Minnesota.  Given herein are recommendations for wetland mapping methods appropriate 
for the ongoing National Wetlands Inventory update in Minnesota.  This document is provided to 
MNDNR by the University of Minnesota’s Remote Sensing and Geospatial Analysis Lab (RSGAL) in partial 
fulfillment of a contractual agreement between the two parties.  The structure of this report is as 
follows:  1) background information about wetlands and a review of relevant literature regarding 
wetland mapping, 2) detailed summaries of the research undertaken by RSGAL under this agreement, 3) 
Recommendations and a suggested protocol for wetland mapping in the TCMA. 

1.2.  Background 
 
For regulatory purposes, wetlands are jointly defined by the U.S. Army Corps of Engineers (USACE) and 
the U.S. Environmental Protection Agency (EPA) as: “those areas that are inundated or saturated by 
surface or ground water at a frequency and duration to support, and under normal circumstances do 
support, a prevalence of vegetation typically adapted for life in saturated soil conditions” (Federal 
Register, 1982; Federal Register, 1980). Wetlands are valuable natural resources, as they play a crucial 
role in the ecology of a landscape. Wetlands function as a buffer to open water bodies and provide an 
important ecosystem functions by filtering nutrients and pollutants, storing floodwater and mitigating 
its effects on water bodies, and providing habitat to a variety of wildlife that have adapted to life in 
saturated environments. Wetlands also play a role in the global carbon cycle, acting as carbon sinks.  
 
The United States has experienced significant wetland loss. In a 200 year period between colonization 
and the 1980’s, the lower 48 states lost an estimated 53% of wetland acreage due to a variety of human 
activities such as agriculture, urbanization and development, and pollution (Dahl, 1990; Johnston, 1989). 
In Minnesota, over 50% of the state’s 3.6 million ha of wetlands have been lost, mostly due to land 
drainage for agriculture in southern Minnesota and the Red River Valley. Urbanization causes small 
wetland area losses, but significantly alters a wetland’s physical, biological, and chemical properties 
(Johnston, 1989). The loss of wetlands continues, but the rate of loss may be slowing (Dahl and Johnson, 
1991). Accurate mapping of the spatial distribution of wetlands is important for understanding the 
effects of wetland loss (Baker, et al. 2006). 
 
Mapping wetlands can be achieved through a variety of methodologies. Remote sensing has been used 
as a wetland mapping tool since the 1960’s (Cowardin and Myers, 1974) but recent advances in remote 
sensing technologies may offer considerable increases in accuracy and cost-efficiency. The following 
presents a review of the current status and trends of the remote sensing of wetlands and examines the 
usefulness of a variety of data sources in enhancing the accuracy of wetland classification and mapping. 
 
Wetland delineation and classification can be achieved using several methods. The most accurate 
method is field wetland delineation, where a wetland expert defines the boundary between wetland 
and upland using vegetative, soil, and hydrology field indicators. Field wetland delineation methods are 
described by the U.S. Army Corps of Engineers (1987). This method produces very accurate results but is 
also the most laborious and expensive. While required for regulated activities within wetlands, field 
delineation is often unnecessary for other wetland management uses.  
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Aerial photography is another data type that can be used to determine wetland boundaries. This type of 
inventory requires a trained interpreter to define wetland boundaries based on features distinguishable 
to the human eye on aerial photographs. Problems and inconstancies may arise when multiple 
interpreters attempt to interpret the same photographs, as the accuracy of this method is determined 
by interpreter skill and experience (Baker, et al. 2006). A main disadvantage of aerial photograph 
interpretation is that inaccuracies are possible if the timing of the photography coincides with abnormal 
rainfall. (Ozesmi and Bauer, 2002). Harvey and Hill (2001) were able to achieve 90% accuracy when 
manually interpreting 14 land cover classes, including wetlands, in Australia using aerial photography 
(1:15,000 scale). The Minnesota Wetland Status and Trends Monitoring Program also relies on manual 
stereo-photo-interpretation and managed to achieve overall accuracies of 94% for wetland 
identification and 89% for wetland classification (Kloiber ,2010) 
 
A third data type for mapping wetlands is remotely sensed satellite images. Use of satellite images has 
several advantages over aerial photography. Many satellites have sufficiently high temporal resolution 
to allow the acquisition of several images of the same location throughout a growing season. Satellites 
carrying sensors such as the Landsat Thematic Mapper (TM) allow for multispectral data collection at 
different wavelengths. The main disadvantage of satellite imagery is the lack of spatial resolution when 
compared to aerial photography. Harvey and Hill (2001) were unable to classify the same 14 land cover 
classes using satellite imagery that they were able to classify with aerial photography. An accuracy of 
90% was achieved using satellite imagery only when the 14 classes were aggregated into three broader 
land cover classes. 

1.2.1. Classification Methods 
 
Several image classification methods have been developed and used historically to classify wetlands. No 
standard wetland classes are used, and target classes are often land-cover based and include types such 
as hardwood wetland, coniferous wetland, and herbaceous wetland. Henderson and Lewis (2008) point 
out inconsistencies in land cover definitions and, as an example, ask what percentage of canopy cover 
should be used to discriminate between open water and flooded forest. Specificity of wetland classes 
varies with classification goals and quality of input data.  
 
The traditional and most commonly used classification method is an unsupervised classification of TM 
imagery (Ozesmi and Bauer, 2002; Sader et al., 1995). Although recognized as the least accurate 
method, unsupervised classification is often applied due to its elimination of time consuming training 
steps. 
 
Hybrid classifications, described by Jensen (2005), combine unsupervised clusters with supervised 
training sets of known land cover. The training phase involves defining spectral signatures of known land 
cover and then incorporating those signatures into a classification model. 
 
Another classification method uses TM derivatives to discriminate image texture. Vegetation indices 
such as the normalized difference vegetation index (NDVI), the TM Band 4:5 ratio, and the TM tasseled-
cap model are used as textural information to further discriminate wetlands, particularly forested 
wetlands (Wright and Gallant, 2007; Hodgson et al., 1987). 
 
Several researchers (Wright and Gallant, 2007; Sader et al., 1995) report a decrease in overall error 
when additional predictors are added to TM imagery classification. Wright and Gallant (2007) report an 
overall accuracy of 92.2% when discriminating palustrine wetlands from uplands. They further classified 
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the palustrine wetlands into five Cowardin types (aquatic bed, emergent, forested, scrub shrub, and 
unconsolidated shore) with an overall accuracy of 83%, consistent across 7 years of data. Sader et al. 
(1995) classified four land cover classes at two locations in Maine, and reported overall accuracies of 
72% and 74% for unsupervised classification of TM imagery, 74% and 75% for unsupervised classification 
of the tasseled-cap transformation, and 81% and 78% for the hybrid classification (but with decreased 
producer’s accuracy). 
 
In addition to automated processes, visual interpretation of imagery can be a useful element in the 
classification process. Harvey and Hill (2001) reported that these semi-automated maps produced 9% 
more accurate results than completely automated approaches. Islam, et al. (2008) compared automated 
and semi-automated techniques and found that automated techniques using ETM+ imagery, Shuttle 
Radar Topography Mission (SRTM) data, and topography derivatives produced unacceptable results, 
while the use of semi-automated techniques produced 87% accuracy in distinguishing 15 wetland 
classes. However, the study was limited by the use of low resolution (90m) topographic data in 
automated classification. While shown to improve classification accuracy, the use of human interpreters 
introduces potential biases and inconsistencies into the classification process and certain training and 
methodological techniques must be utilized to prevent bias from affecting experimental results. 

1.2.2. Multitemporal Data 
 
Confusion between upland and wetland forested habitats is consistently reported when performing land 
cover classification based on one image (Lunetta and Balogh, 1999; Wang, 1998; Townsend and Walsh, 
2001). Accuracy improvements in mapping of wetland habitats, especially forested wetlands, can be 
achieved using multiple dates of imagery collected throughout a growing season. This technique 
provides images of the same location with distinguishing features, such as canopy cover, biomass, and 
soil moisture, in various states.  
 
Wolter et al. (1995) reported good results differentiating tree species in northwest Wisconsin using 
multitemporal data. Using five images, collected May through February in varying years, the author was 
able to achieve species level classification with an accuracy of 80.1%. Accuracy for Anderson Level II 
(hardwood, conifer, mixed) was 93.6%. Overall accuracy for 22 forest types was 83.2%. Successfully 
classified species included quaking aspen, sugar maple, northern red oak, northern pin oak, and 
tamarack (Wolter et al. 1995). Lunetta and Balogh (1999) compared single date to two date classification 
in wetland identification. Two dates of Landsat 5 TM data, leaf-on imagery to differentiate land cover 
types and spring leaf-off data to identify areas exhibiting wetland hydrology, produced an accuracy of 
88% compared to 69% for single date. Wang (1998) reported an accuracy improvement in land cover 
classification from 51% with a single date image to 85% with multiple dates using JERS imagery. 
Likewise, Costa (2004) reported 93% accuracy for floodplain forest classification using JERS-1 and 
Radarsat-1 data collected throughout the wet season in the Amazon, with a drop in accuracy to 59% if 
only the one image was used during the first month of the dry season. However, Arzandeh and Wang 
(2003) reported that single date, single polarization, JERS imagery can be useful in delineating wetlands 
from non-wetlands, citing 88% accuracy in a study conducted in Ontario. 
 
Townsend and Walsh (2001) combined multispectral and multitemporal techniques as they mapped 
wetland plant communities in North Carolina. Twenty-one forested communities were distinguished 
using Landsat TM data from three seasons (March-April, May-June, and July-August) in a single year. A 
hierarchical classification scheme was developed using feature sets from TM bands and their 
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combinations (NDVI, TM5/TM4). The authors report overall accuracy of 92.1% using discrete 
classification. When fuzzy class relationships were considered, accuracy increased to 96.6%.  

1.2.3. Hyperspectral Data 
 
Sensors such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) collect hyperspectral data 
in 224 spectral bands allowing for discrimination of individual species from images (Hirano et al. 2003). 
 
Neuenschwander et al. (1998) used AVIRIS data to map coastal wetlands in Florida. The authors 
reported increased accuracy of identification of wetland vegetation (ranging from 85.0% to 93.5%, 
depending on classifier) when compared to using Landsat TM multispectral data. However, wetlands 
and uplands were separated based on biomass (NDVI). Willow swamps and forested swamps were 
included as uplands due to their high biomass. In addition, only 12 vegetative communities (upland and 
wetland) were distinguished, leading to high accuracy (Neuenschwander et al. 1998).  
 
Hirano et al. (2003) mapped wetland vegetative communities in the Everglades National Park with 
hyperspectral AVIRIS data. Using only pure pixels from training sites established by manually interpreted 
CIR aerial photographs, the authors were able to distinguish 133 unique vegetative classes, which were 
compressed into 23 classes based on dominant vegetation. Accuracies varied between 40% and 100%, 
with an overall accuracy of 65.7%. Accuracy was limited by relatively poor spatial resolution (20m). 
Other reported problems with hyperspectral data are data volume and complex data pre-processing 
techniques (Hirano et al. 2003).  
 
Becker et al. (2005) attempted to reduce hyperspectral data volume by isolating optimal spectral bands 
for use in mapping coastal wetland vegetation in the Great Lake region. The authors were able to isolate 
eight spectral bands that contained information enough to distinguish the regional vegetation. However, 
these spectral bands are specific to the coastal vegetative plant communities in the Great Lakes region. 
Becker et al. (2007) used seven of these eight spectral bands to classify wetland vegetation. Tests were 
also conducted to determine optimal spatial resolution. The greatest accuracy was reported with spatial 
resolution less than 2m. An overall accuracy of 86.3% was reported for the 7-band combination at under 
2m resolution (Becker, et al. 2007). 

1.2.4. Radar Imagery 
 
Most of the focus of remote sensing of wetlands has been on sensors operating in the optical and 
infrared range of the electromagnetic spectrum, the limitations of which have been noted (Ozesmi and 
Bauer, 2002). Unlike optical sensors, radar sensors are unique in that they operate in the microwave 
portion of the electromagnetic spectrum and are insensitive to atmospheric conditions (e.g. cloud cover) 
and low light conditions, and can therefore offer more consistent multi-temporal images. Radar 
backscatter is sensitive to soil and vegetation moisture properties and can, to some degree, penetrate 
the forest canopy and provide sub-canopy vegetation and soil saturation information (Whitcomb et al., 
2007; Henderson and Lewis, 2008). Because radar is sensitive to texture, techniques using inferometric 
analysis of radar data can identify changes in water levels down to the centimeter (Wdowinski, 2007).  
 
Radar antennas can transmit radar waves of varying wavelengths. Common radar bands are C-band, L-
band, and P-band, in order of increasing wavelength. Longer wavelengths tend to penetrate much 
farther into the forest canopy, thus providing a backscatter signal that conveys information about sub-
canopy vegetation and moisture conditions (Whitcomb et al., 2007). Woody wetlands have high 
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backscatter and appear white, and are often confused with urban areas, while herbaceous wetlands 
have less backscatter and appear darker (Wdowinski, 2007). Wang (1995) used C-band, L-band, and P-
band radar and found that high leaf area indices had an effect on C-band radar only, not L-band or P-
band. Thus, L-band radar is significantly better at detecting flooded forests with intact canopy cover 
than C-band (Kasischke, 1997; Rosenqvist et al., 2004; Hess et al., 2003). Conversely, C-band radar is 
better at identifying herbaceous wetlands (Henderson and Lewis, 2008). 
 
Radar waves can be sent and received at similar or dissimilar polarizations. Similar polarizations (HH, VV) 
are reported as useful in discriminating forested wetland/non-wetland by providing better image 
contrast than cross-polarization (HV), whereas cross-polarizations were preferable when distinguishing 
between forested swamps and herbaceous marshes (Hess et al., 1990; Hess et al., 1995).  
 
Multiple studies report that a combination of C-band and L-band radar, as well as mixed polarizations, 
significantly increased accuracy of wetland/non-wetland discrimination and wetland vegetation 
classification (Hess et al., 1990; Hess et al., 1995; Dobson, 1995; Whitcomb et al., 2007; Henderson and 
Lewis, 2008). Henderson and Lewis (2008) wrote that cross-polarized imagery can be as valuable as 
single-polarized, multitemporal imagery. Studies also found that vegetation information is enhanced by 
using multitemporal and cross-polarized imagery and reported land cover accuracies above 90% when 
using SAR imagery (Kasischke, 1997; Dobson, 1995). Lozano-Garcia and Hoffer (1993) reported increased 
accuracy in land cover classification when they combined SIR-B data with Landsat TM data. 
 
Whitcomb et al. (2007) used JERS to collect two seasons of L-band SAR imagery to produce a wetland 
map throughout the state of Alaska. Ancillary data sets including DEM (66m spatial resolution), map of 
open water, and latitude were included in the classification model. The Random Forests decision tree 
algorithm (Breiman, 2001) was used as a classifier. Nine wetland classes were aggregated which roughly 
correlated to the U.S. Fish and Wildlife Service’s Circular 39 wetland classification (Shaw and Fredine, 
2971). The authors reported accuracies ranging from 69.5% to 95%, depending on wetland class, with an 
overall accuracy of 89.5%. The NWI map for Alaska was used as test data set in the accuracy assessment. 
The authors suggest L-band in combination with C-band SAR will better distinguish between emergent 
wetland types (Whitcomb et al. 2007).  
 
Henderson and Lewis (2008) provide the most recent review of usage of radar data to detect and classify 
wetlands. They reported that distinguishing wetlands and non-wetlands is consistently done with higher 
accuracy than discriminating wetland vegetative species. However, they noted that when mapping 
wetland species, most of the confusion is between wetland types and not between wetland and non-
wetland vegetation. (Henderson and Lewis, 2008).    

1.2.5. Ancillary Data Sets 
 
In addition to imagery, ancillary data sets may be used to derive valuable information. Digital elevation 
models (DEM) are most commonly used, from which can be derived a number of applicable datasets 
including slope, flow accumulation, and probability of soil wetness. Digital soil surveys such as the Soil 
Survey Geographic (SSURGO) product from the Natural Resources Conservation Service (NRCS) are also 
used to highlight areas of mapped hydric soils. GIS data sets are integrated into classification models 
using rule based classification or decision trees. Bolstad and Lillesand (1992) reported land-cover 
classification accuracy 16% higher (73-89%) for a GIS rule-based model incorporating TM imagery, soils, 
and terrain data than for traditional maximum likelihood TM imagery classification. 
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Creed et al. (2003) investigated optimal DEM spatial resolution and source while locating “cryptic 
wetlands” (i.e. “closed canopy wetlands with no distinct wetland-specific canopy species, as indicated by 
analysis of aerial photography and/or satellite images”) to determine their effects on dissolved organic 
carbon. LiDAR was found to be better at discriminating wetlands when compared to field based 
delineations (r2 = 0.98, p<0.001) than photogrammetric based DEMs. Comparisons of ability of 
automatically derived wetlands from scaled DEMs to manually derived wetlands were found to be 
significant up to 100m (p<0.05) with 5m, 10m, and 25m showing the greatest strength (r2 = 0.98, r2 = 
0.97, r2 = 0.99; p<0.001) of correlation. Similarly, Thompson et al. (2001) attempted to predict the depth 
of the soil A-horizon using 10m and 30m DEMs and noted that, while differences in DEM resolution 
affect model coefficients and the DN values of terrain derivatives, each displayed similar capabilities in 
prediction A-horizon depth. 
 
Murphy et al. (2007) compared vector based wetland polygons derived from manual aerial photography 
interpretation and wetlands areas in New Brunswick, Canada modeled using a depth-to-water index. 
The depth-to-water index uses the compound topographic index (CTI) and correlates the CTI value with 
depth to groundwater to determine wet areas. The authors report 51% - 67% of discrete wet areas are 
within the 0-10cm depth-to-groundwater class. The continuous (raster) depth-to-groundwater layer was 
derived from DEM with 70m grid spacing and used the D8 flow direction algorithm. The authors note 
that an improvement in DEM spatial resolution may increase accuracy, and that smaller (<1ha) wetlands 
were likely missed. Authors also point out that raised bogs characterized by a higher elevation due to 
accumulation of peat are sources of error when using derivations of elevation data to determine 
likeliness of saturation (Murphy et al., 2007).  
 
Hogg and Todd (2007) also used DEM data and compared the effectiveness of several delineation 
methods in distinguishing several wetland types (marsh, swamp, bog, fen, etc). Many DEM derivations 
were calculated, and the CTI (using the D-infinity algorithm) and the positive balance hydraulic slope 
(PMNB) were determined to be the best at distinguishing wetlands and threshold values were 
established for input into a classification and regression tree (CART). The authors compared several 
statistical methods and found the CART to be the most accurate, reporting results of 90% calibration 
accuracy and 84% validation accuracy. The authors stress the usefulness of terrain data above optical 
data because its delineations of wetland boundaries are easily repeatable; however, unlike optical data 
it lacks sensitive wetland mapping triggers such as observable moisture (Hogg and Todd, 2007; Lang and 
McCarty, 2009) 
 
Baker et al. (2006) used Landsat ETM+ data from May and September to classify land cover and 
wetland/riparian systems in Montana. Multitemporal images were used only to assess changing 
hydrology throughout the growing season and were not used to classify vegetation. Ancillary data 
included a 30m DEM and hydric soils maps. Authors compared accuracy of Classification Tree Analysis 
(CTA) and Stochastic Gradient Boosting (SGB) classifiers and reported an overall accuracy of 73.1% with 
the CTA and 86.0% with the SGB (Baker et al. 2006).  
 
Li and Chen (2005) present an easily comparable analysis between assessment methods. The authors 
used multiple dates of DEM, Landsat ETM+, as well as Radarsat-1/SAR data and a rule-based 
classification method to distinguish between bogs, fens, swamps, marshes, and shallow water habitats 
in eastern Canada. Authors report accuracy of 71% to 92%, depending on wetland type, compared to 
traditional methods using ETM+ alone (24-89%) and ETM+ and SAR in combination (78-85%). The rule-
based method is presented in a clear, stepwise manner. The authors also report that the addition of 
radar data to optical data helped delineate shrub/tree wetlands from shrub/forest upland, but it may 
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have had a negative effect on the overall land cover classification accuracy from the introduction of 
speckle and noise. 
 
In summary, while numerous approaches have been used in wetland mapping, there is no universally 
applicable method.  The choice of data source and mapping method is governed by the types of 
wetlands being mapped and the desired level of thematic detail.  The following sections of this 
document describe mapping method experiments conducted using Minnesota’s wetlands. 

2. Methods/Results 

2.1.  Wetland Mapping using Terrain Indices 

2.1.1. Terrain Indices Introduction 
 
Recent technological advances have allowed the acquisition of elevation data at higher resolutions than 
ever before. With this new data (i.e. LIDAR) comes opportunities to derive more accurate topographic 
attributes for landscapes. A Digital Elevation Model (DEM) provides the base data to calculate 
catchment area, upslope area, slope, aspect, and secondary information such as terrain indices. Terrain 
indices such as the Compound Topographic Index (CTI) and Slope Cost-Distance Index (SCDI) are 
indicators of the expected “wetness” of an area based on the amount and direction of surface water 
flow (Blyth et al., 2004; Guntner et al., 2004; Moore et al., 1991). Such terrain indices can identify parts 
of the landscape where sufficient wetness could be present to allow the formation of wetlands. 
Therefore, topographic information can assist in mapping depressional and flat areas that may contain 
wetlands. This information can provide more accurate and timely wetland maps than the current 
Minnesota National Wetlands Inventory (NWI), which is of limited utility because of the scale of the 
aerial photos used to do the mapping and the significant changes that have occurred since the maps 
were created. As a consequence, there is a great need to update wetlands maps with more accurate 
boundaries, better type classifications, and improved delineation of smaller wetlands.  
 
In this study, four approaches were evaluated to determine how topographic data can assist with 
wetland mapping in Minnesota.  The first and second approaches involved assessing the effectiveness of 
two topographic indices: CTI and SCDI derived from a 3m resolution DEM. The third approach evaluated 
the resolution sensitivity of the CTI and SCDI created from 9 m, 12 m, 24 m, and 33 m LiDAR DEMs; the 
10 m National Elevation Data; and a 30 m USGS DEM.  The fourth approach evaluated combining CTI, 
aerial imagery, and soil data to map wetlands.  The goal of this evaluation is to identify methods to 
increase the accuracy and decrease the cost of mapping wetlands. 

2.1.2. Terrain Indices Methods 
 
The study area for this project was the city of Chanhassen in Carver County, Minnesota. This area was 
chosen because it represents the range of Minnesota Metro area wetland types and because high 
quality field reference data was available for this area. Spatial data development, manipulation, and 
analysis were completed using ESRI’s ArcGIS 9.3 with the Spatial Analyst, 3-D Analyst, and TauDEM 
(Terrain Analysis Using Digital Elevation Models) tools. All data sets were projected to UTM Zone 15N, 
NAD83.  The following data sets were used in this study: 
 

I. Hydrographic Datasets 
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a. DNR 24K streams 
b. DNR 24K lakes 
c. USFWS National Wetland Inventory 
d. City of Chanhassen Wetland Inventory (August 2006, data collected using GPS 

equipment in 2004-2005) 
 

II. Topographic Datasets 
a. LIDAR elevation data: 3m DEM 
b. NED elevation data: 10 m DEM 
c. USGS elevation data: 30 m DEM 

 
III. Aerial Photography  

a.   U.S. Department of Agriculture's National Agriculture Imagery Program (NAIP), 1-meter 
resolution, 2008 digital images with four bands:  red, green, blue, color-infrared (CIR) 
 

IV. Soil Survey Geographic (SSURGO) Database 
a.   Hydric Soils 
b.   Very poorly drained 

2.1.2.1. Approach 1 – Compound Topographic Index (CTI) 
 
The CTI is an indicator of potential saturated and unsaturated areas within a catchment area (e.g. a 
watershed). The CTI is the natural log (ln) of the ratio of the Specific Catchment Area (As) expressed as 
m² per unit width orthogonal to the flow direction divided by the tangent of the slope (β).  Thus, CTI = ln 
*(As)/ (Tan (β)+. For comparison purposes, two types of CTI were created for the city of Chanhassen; one 
was created using the D-8 flow modeling approach and the other one using the D-Infinity (D-inf) flow 
modeling approach.  
 
Prior to calculating the CTIs the 3m LiDAR, 10 m NED and 30 m USGS DEM were clipped to the boundary 
of the city of Chanhassen. The following steps were performed to create the two types of CTI: 
 
Step 1 - DEM Reconditioning and Fill Sinks 
 
Elevation irregularities (e.g. erroneous sinks and peaks) that could interfere with the correct hydrologic 
flow were removed using the ArcHydro and TauDEM tools.  A hydrology layer was used to burn in 
streams to the DEM.  Road berm dams were manually corrected in situations where they appeared to 
affect water flow. 
 
Step 2 - Flow Direction 
 
After removing elevation irregularities, the next step was to create a flow direction grid for each DEM, 
one using the D-8 method and the other using the D- inf method. The D8 method is limited to one of 
eight directions and assumes that flow is limited to one cardinal direction and one of two specific 
widths, routing the flow from one cell to a single neighbor. This has the effect of representing 
convergent flow (multiple cells flowing to a single cell), while stopping the representation of divergent 
flow (a single cell flowing to multiple cells). In the real world, flow most likely diverges and converges at 
different places and periods. 
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The D-inf algorithm assigns a flow direction based on the steepest slope on a triangular facet by 
constructing facet from the DEM (Tarboton 1997, Douglas 1986). This method is capable of creating a 
multi-directional flow, representing a divergent flow. D-inf offers an alternative method of calculating 
slopes, flow directions, and contributing area through the accumulation of converging and diverging 
flow directions.  
 
Step 3 - Contributing Area 
 
A watershed is the upslope area contributing flow to a given location. This area is also referred 
sometimes as a basin, catchment, or contributing area.  A contributing area grid was delineated for each 
algorithm method. In the ArcHydro tool this was done using the D-8 flow direction grid. Alternatively, in 
TauDEM tool the D-inf algorithm approach was taken to calculate the contributing area. This gives a 
contributing area grid evaluated by accumulating the area or weight loading upslope of each location.   
 
Step 4 - Specific Catchment Area (As) 
 
Specific Catchment Area is a raster grid representing upslope contributing area. A specific catchment 
area grid was created for each approach. This is measured in specific catchment area units, i.e. area per 
unit contour width, using grid cell as the unit width and grid cell size squared as grid cell area.   
 
Step 5 - Slope Grid 

The slope grid is a raster grid representing change in elevation between adjacent pixels.  A slope grid 
was derived directly from the DEM and a minimum value of 0.0001 was imposed on the resulting 
calculated slope to avoid division by zero for future CTI calculations. This was created using the raster 
calculator from Spatial Analyst extension: Slope grid + 0.001 

 
Step 6 - Map Algebra – CTI Calculation  
 
Once all the required grids were created (Specific catchment area and Slope), the raster calculator from 
Spatial Analyst extension was used to calculate the CTI using the CTI equation:  CTI:  Ln [(As)/ (Tan (β)], 
where As is the specific catchment area expressed as m2 per unit width orthogonal to the flow direction 
and β is the tangent of the slope in Radians. 

 
Step 7 - Low Pass Filter Operation 
 
A low pass filter was used for each type of CTI created to reduce the significance of anomalous cells. 
 

2.1.2.2. Approach 2 – Slope Cost-Distance Index  (SCDI)  
 
The SCDI calculates for each cell the least accumulative cost to specified location. This is a function of 
the drainage line and slope grid. The first five steps of the computation of the SCDI are the same as 
those for the CTI.   The following additional steps were performed. 
 
Step 6 - Stream Definition 
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The stream definition function from ArcHydro was used to extract cells with flow accumulation grid 
values above a certain threshold. This threshold was defined as a number of cells, for this study a 1% 
area threshold was used.  
 
Step 7 - Stream Segmentation 
The stream segmentation function from ArcHydro was used to break up the streams into head segments 
and joint segments.  

 
Step 8 - Drainage Line Processing 
This function from ArcHydro was used to convert the stream segmentation grid into a vector layer. 
 
Step 9 - Spatial Analyst Calculation to obtain the Slope Cost-Distance Index 
The Cost-Distance function from Spatial Analyst tool was used to create the SCDI. This function finds the 
path of least resistance in which water is assumed to flow. The drainage network vector layer (Drainage 
Line) was used as an input direction and the slope grid was used as the cost grid. Since, the SCDI is a 
comparative function rather than a calculated function like the CTI, absolute values of slope do not 
matter and degrees or percentage are acceptable as units. 

2.1.2.3. Approach 3 – CTI & SCDI Resolution Sensitivity  

To assess the resolution sensitivity of the CTI & SCDI the 3 m LiDAR DEM was degraded to 9, 12, 24, and 
33 meters. This degradation process was done using the degrade tool from ERDAS IMAGE 9.3. This tool 
uses an average pixel method to make up the new larger pixels. Once all the new DEMs were created, 
the next step was to proceed with the creation and evaluation of the CTI & SCDI for each DEM.  

2.1.2.4. Approach 4 – Use of CTI, NDVI & Soils Data to Identify Wetlands 
 
Three data sets were used to develop this approach. The first data set was the CTI layer previously 
explained, the second was the soil layer obtained from Soil Survey Geographic (SSURGO) extracting only 
the hydric and very poorly drained soils were used, and the third was the NAIP imagery 2008. 
 
For the NAIP imagery, a Normalized Difference Vegetation Index (NDVI) was calculated, NDVI = (NIR – 
RED) / (NIR + RED), where NIR represent the near infrared band and RED represent the red band. This is 
a numerical indicator of the amount of live green vegetation in an image pixel. The purpose of the NDVI 
in this analysis was to exclude areas that are topographically suitable for wetlands but contain non-
vegetated or impervious cover. A threshold of less or equal to 0.18 NDVI was used. Anything less or 
equal to this value was considered to be impervious, and anything greater than this value was 
considered to be vegetation. The NDVI was calculated from the NAIP imagery (2008), using band 4 = NIR 
and band 1 = Red.  A hydrology layer was used to ensure that open water such as lakes and rivers was 
not removed due to its low NDVI. 

Boolean and Arithmetic Steps 

Once the CTI, NDVI, and soil layer were ready, boolean and arithmetic steps were used to determine 
whether each pixel was considered to be wetland or upland. The following steps were performed to 
combine these three layers. 
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1) Reclassification of CTI values:  Based on threshold values, the CTI was reclassified either as wet 
represented by number 1 or dry represented by number 0. Any value greater or equal than the 
mean + ½ standard deviation of the CTI values was reclassified as wet (1), the rest was considered 
dry (0).  
Output = CTI_R (new CTI reclassified layer) 
 

2) Reclassification of NDVI values 
Based on threshold values the NDVI was reclassified either as vegetated or non-vegetated. In this 
model the number 0 was assigned to all the values representing non-vegetated, which in this model 
represented upland. Threshold < = 0.18 = Impervious (0); Output = NDVI_R (new NDVI reclassified 
layer) 
 

3) Reclassification of Soil values 
For the reclassification of soil values the Hydric soil + Very Poorly Drained soils were converted from 
vector to raster, reclassified as wet, and assigned the value of 1, representing wetness. 
Output = Soil_R (new Soil reclassified layer) 
 

4) Raster Calculator: this tool was used to create the first combination of NDVI and CTI in one layer. 
The following equation was used for this calculation:  
Equation 1:  (NDVI_R) AND* (CTI_R) = Input_A 

* CAND is a logical tool from ArcGIS that performs a Combinatorial And operation on the cell values 
of two input rasters. 

5) Raster Calculator: The second equation was the combination of the Input_A ( NDVI + CTI)  and the 
soil layer 
Equation 2 
(Input_A) AND (Soil_R) = Input_B 

 
6) Reclassification of Input_B grid: This was the final step performed to reclassify the values from 

input_B, either as wet =1 or dry =0, which at the end the number 1 is translated as the potential 
pixel wetland value. 
1 = wet 
0 = Dry 

2.1.2.5. Accuracy Assessment of the Four Approaches 
 
A pixel by pixel accuracy assessment was carried out to evaluate the four approaches taken for the use 
of topographic data in identifying potential wetlands.  This was done by comparing the results from each 
of the four approaches to a “boots-on-the-ground” wetland delineation for Chanhassen, MN. An error 
matrix which compares the reference class values to the assigned class values in a c x c matrix, where c 
is the number of classes was generated. In addition, an error matrix was created to provide summarize 
information on classification accuracy. 
 
The following statistics were computed:  

 Percent overall accuracy  

 Error matrix 

 User’s accuracy (considers commission errors) 
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 Producer's accuracy (considers omission errors) 

2.1.3. Terrain Indices Results 

2.1.3.1. Study Area 
 
Figures 1 and 2 show the city of Chanhassen geographic location and elevation data. The city of 
Chanhassen is located in the southwest metropolitan area of the Twin Cities of Minneapolis and St. Paul. 
While the bulk of Chanhassen is in Carver County, it also extends into Hennepin County. The City is 
approximately 23 square miles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Location of the study area.                                 Figure 2. Elevation map of the study area. 

 

2.1.3.2. Wetland Sizes in the Study Area 
 
Table 1 shows the different size of wetlands existing in the city of Chanhassen.  More than 60% of its 
wetlands are less than 1 acre. Only 7.7% are greater than 10 acres. 
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    Table 1. Wetland size for the city of Chanhassen. 

 Acre Size # of Wetlands % of study area 
Cumulative 
% 

0.1 - 0.5 202 46.9 
61.7 

0.5 - 1  64 14.8 

1 - 2  61 14.2 75.9 

2 - 3 27 6.3 

92.3 

3 - 6  24 5.6 

6 - 10 20 4.6 

10 - 25 14 3.2   

25 - 50 9 2.1   

50 - 70 2 0.5   

70 - 100 2 0.5   

100 - 150 3 0.7   

> = 150 3 0.7   

Total 431 100   

2.1.3.3. Comparison between the USFWS National Wetland Inventory (NWI) and the City of 
Chanhassen Wetland Inventory  

 
Figures 3 and 4 show some of the problems of the USFWS NWI. Some of the problems represented in 
these figures are the significant changes that have occurred due to urban development in five years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison between the USFWS NWI and the City of Chanhassen Wetland Inventory on 2003 NAIP images. 
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Figure 4. Comparison between the USFWS NWI and the City of Chanhassen Wetland Inventory on 2008 NAIP images. 

2.1.3.4. Accuracy Assessment results for Approach 1 (CTI) and Approach 3 Resolution 
Sensitivity (CTI) 

 
An accuracy assessment tool was used in ArcGIS 9.3 to generate an accuracy assessment report for each 
resolution. Table 2 shows the results of this evaluation. This table shows clearly that the best resolution 
for identifying potential wetlands was 24 m with the highest producer accuracy percentage compared to 
the 10 m NED and 30 m USGS DEM.  
 
It is notable that the highest errors of omission (omitting wetlands) were for the CTI derived from the 
NED and USGS DEM (Figure 5).  At the same type the LiDAR data presented some problems due to the 
amount of details in the 3 m resolution (Figure 6), causing that resolution to have the highest 
percentage of error of commission (classifying pixels as wet when they are not) compared to the rest of 
the derived resolutions. 
 
Table 2. Accuracy assessment results for CTI using the D-inf algorithm and created for the 3, 9, 10, 12, 24, 30, 33 m resolution. 

CTI – D-infinity algorithm 

CTI from DEM Overall Accuracy Users Accuracy 
Producers 
Accuracy 

3m 86 68 85 

9m 88 72 88 

12m 89 73 88 

24m 90 76 87 

33m 90 77 86 

10 m NED 88 76 77 

30 m (USGS) 84 74 69 
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Figure 5. Comparisons between the CTI 24 m derived from LiDAR DEM & the CTI 30 m derived from the USGS DEM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Comparisons between the CTI 3 m & CTI 24 m derived from LiDAR DEM. 

 

2.1.3.5. Comparison between D-8 vs. D- infinity 
 
The D-8 and D-infinity (D-inf) approaches were evaluated and the CTI was created for each method. 
Results (Table 3) indicate that both approaches have their benefits and disadvantages. Table 3 shows 
that the CTI derived from the D-inf approach has the highest producer’s accuracy, which means the 
errors of omission are lower than those for the D-8 method. On the other hand the CTI derived from the 
D-8 approach has the highest user’s accuracy, which means the errors of commission are less compared 
to the other approach. Figures 7 and 8 show the D-8 and D-inf CTI layers. 
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Table 3. Comparison between D-inf and D-8 algorithm method 

 

CTI DEM 
Overall 
Accuracy 

Users 
Accuracy 

Producers 
Accuracy 

CTI - D-Inf  24m 90 76 87 

CTI- D-8 24m 90 83 77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.3.6. Accuracy Assessment results for Approach 2 (SCDI) and Approach 3 Resolution 
Sensitivity (SCDI) 

 
Table 4 shows the results for the accuracy totals for the SCDI. This table shows clearly that the highest 
overall accuracy and producer accuracy was for the SCDI derived from the 24m DEM.  This indicates that 
resolution affects the efficiency of this index to identify potential wetlands (Figure 9). 
 
 
 
 
 
 
 

Omission 
error 

Commission 
error 

Figure 7. CTI 24 m derived from LiDAR DEM 
using the D-8 algorithm  

 

Figure 8. CTI 24 m derived from LiDAR DEM using the D-
inf algorithm  
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Table 4. Accuracy assessment results for SCDI using the D-8 algorithm, created for the 3, 9, 12, 24, 33 m resolution. 

 

SCDI 

DEM Overall Accuracy Users Accuracy 
Producers 
Accuracy 

3m 87 79 72 

9m 88 77 81 

12m 88 77 81 

24m 88 76 82 

33m 87 75 79 

 

 
 
 
 
 
 
 
 
 
 

Figure 9. SCDI 24 m derived from LiDAR DEM using the D-8 algorithm  
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2.1.3.7. Results and accuracy assessment percentages for approach # 4 Combination of CTI, 
NDVI & Soil 

 
Including the NDVI in the model improved the results by eliminating flat impervious surfaces, such as 
parking lots, from the wetland class predicted by the CTI alone (Figure 10 and 11). The NDVI values for 
image pixels containing buildings are low in Figure 10.  In the NDVI shown in Figure 11, these areas are 
indicated as non-vegetated, and so are removed from consideration as potential wetlands, even if they 
are topographically suited to be wet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the 24 m DEM provided the highest accuracy, for the combined model only the 24 m DEM was 
used. Table 5 shows the results of the inclusion of soil and NDVI data.  The user’s accuracy increased 
sharply when these data were added to the model.  Figure 12 shows a graphical depiction of the 
benefits of using soils and NDVI data in wetlands mapping. 
 
Table 5. Accuracy assessment results for the combination of CTI, NDVI & Soil for 24 m 

Acres Combinations  DEM 
%Overall 
Accuracy 

% User  Accuracy 
% Produser 
Accuracy 

0.1  to 788   CTI 24m 90 76 87 

0.1  to 788  CTI + NDVI + Soils 24m 92 82 86 

>= to 1  CTI + NDVI + Soils 24m 92 82 89 

Figure 10. Low (wet) CTI values in impervious surface areas. 

 
Figure 11. Areas removed from consideration as wetlands 
due to NDVI values. 
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2.1.4. Terrain Indices Discussion  
 
A comparison of the two methods (D-8 and D-inf) show that both methods have similar overall accuracy 
results, nevertheless, there is a slight difference between the producer’s and user’s accuracy estimates 
for both methods.  
 
The CTI/D-inf/LiDAR derived map is significantly more accurate in producer’s accuracy (87%) compared 
to the CTI/D-8/LiDAR derived map (77 % producer’s accuracy), and has a lower rate of wetland 
omissions (Table 3, Figure 8). On the other hand, the CTI/D-8/LiDAR derived map had a much lower 17% 
commission error and higher user’s accuracy (83%) relative to the CTI/D-inf/LiDAR derived map (76% 
user’s accuracy and 24% commission error), which means that this method is able to classify more pixels 
correctly as wetland compared to the D-inf. (Table 3, Figure 7). 
 
There are a few general issues that are important to consider when using these methods. The TauDEM 
tool/D-inf method will only work with DEM grids smaller than 7000 * 7000 cells (approximately 100-
miles by 100-miles with a 24-m resolution DEM) and it requires Windows 2000 or higher, plus ArcGIS 8.2 
or higher version to run this tool. Alternatively, ArcHydro tool/D-8 method can work with any DEM grid 
size and works with any type of ArcGIS desktop version. Both tools are available to be run with an ArcGIS 
desktop version, with the only limitation for TauDEM tool regarding the DEM grid size.  
 
We observed classification accuracies for the SCD/LiDAR derived maps (Table 4) that were similar to the 
CTI/LiDAR derived maps (Table 2).Omission errors were lower in the CTI/LiDAR derived maps relative to 
the other index. Thus, CTI surpasses SCD almost in every aspect such as better delineation boundaries 
and less wetlands omission (Figures 8, 9). 
  

Figure 12.  Comparison between CTI alone and the combination of the three layers. 
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The SCD/LiDAR derived map also has some limitations such as the error of misclassifying many pixels as 
wet because of the method used to create this index. This index calculates water accumulation based in 
finding the path of least resistance in which water is assumed to flow based on a drainage line. This 
principle limits the potential of finding wetlands that are far away of a drainage line or streams. Thus, 
this may not be a good index to use in areas with a few streams or drainage lines. 
 
LiDAR data proved useful in increasing classification accuracy in our study area, primarily in identifying 
wetland/upland types, local low areas in the terrain based on elevation differences and flow direction. 
(Figures 5, 6). For example the CTI/USGS derived map show higher errors of omission (Table 2, Figure 5) 
compared to the CTI/LiDAR derived maps. Simply replacing the USGS 30-meter DEM with a 24-m DEM 
derived from LiDAR significantly improved wetland identification from 84% overall accuracy to 90% 
overall accuracy . 
 
High resolution images such as NAIP are useful for mapping wetlands, and are actually better than the 
aerial photographs used to create the original NWI. While mapping accuracies using terrain indices 
alone were reasonable (84 to 92%), accuracies improved when the CTI/LiDAR map was combined with 
the high resolution imagery (NDVI) and soil data (Table 5, Figure 13).  Our result shows that errors of 
commissions were significantly reduced from 24% (CTI/LiDAR) to 18% (combination of CTI/LiDAR, NDVI, 
soils), while not significantly increasing omission error rates. This combination of data types better 
performance than using LiDAR data alone. 
 
Based on these observations, we can infer that LiDAR data may help identify terrain features such as 
steep local gradients, the edges of flat areas, and delineation of a more accurate wetland/upland 
boundary. However, these terrain indexes may work better in conjunction with spectral data and other 
type of ancillary data such as soils type. Therefore, it is necessary to explore other types of 
LiDAR/ancillary data combinations to continue to improve accuracy in wetland boundary delineations. 
One possible option is the use of other algorithms such as decision trees or models that could automate 
the process of combining several layers (CTI, NDVI, soils) instead of the use of Boolean steps to create 
this type of combinations as was done in this study.   
 
In terms of wide scale use, this method would be difficult to scale up to the entire state.  Processing a 
state-wide DEM to compute CTI may present a significant computing challenge.  Possible solutions 
include using migrating the processing to a supercomputer or tiling the study area.   

2.1.5. Terrain Indices Conclusions  
 

 CTI does better job than SCDI in finding potential wetlands.  
 

 DEM resolution is an important factor affecting the potential use for mapping wetlands, but quality 
of the source data can also have a significant effect on results. 
 

 There is a great need to obtain higher resolution elevation data such as LiDAR, because this type of 
data may offer better results in the development of terrain indices and hence the automation for 
finding wetlands using topographic data. In this study a LiDAR DEM outperforms a 30 m (USGS) in 
overall accuracy 
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 From the four approaches evaluated in this study the best approach to use for finding wetlands 
using a GIS approach is the combination of CTI + Soil +NDVI. This approach does better job than 
terrain indices alone. 

 

 The use of topographic data in combination with other ancillary data allows for automated 
delineation of wetlands in a more accurate way.  
 

2.2.  Wetland Mapping using Object Oriented Algorithms 

2.2.1. Introduction to Object-Oriented Classification  
 
Supervised and unsupervised classification approaches in remote sensing assign each pixel to a known 
information class or cluster class without regard to location or spatial relationships.  These per-pixel 
classifiers have no way to account for spatial patterns in the classes, nor any way to examine adjacent 
pixels in the image for similarities.  In contrast, object-oriented classifications first group pixels into 
clusters of homogeneous pixels based on set maximum heterogeneity thresholds, and then classify 
those clusters based on their aggregated statistics rather than individual pixels. Also, because pixels are 
grouped prior to any analysis, object-oriented classifications help reduce image speckle (Hess et al, 
2003), decrease the effects of shadows within an image, and eliminate the need for post-classification 
smoothing, since the use of image objects prevents the “salt and pepper” effect of per-pixel 
classifications. 
 
Wetland vegetation is highly heterogeneous, both within a single wetland and among wetland classes, 
making discrimination between wetland classes difficult (Grenier et al, 2007; Fournier et al, 2007; 
Bruzzone and Carlin, 2006).  In addition, wetlands have complex spatial arrangements often 
characterized by alternating patches of open water and vegetation interspersed throughout the 
wetland, which complicates the delineation of wetland patches as a contiguous whole. Because object-
oriented methods are able to connect neighboring pixels, they are also the better choice for creating 
ecology-based classification rules and combining the ancillary environmental datasets that are best able 
to identify wetlands (Fournier et al, 2007; Grenier et al, 2007). 

 
When using high spatial resolution imagery, as required by the Federal Geographic Data Commission 
(FDGC) wetland mapping standard, the spectral variability within each wetland class increases at the 
expense of between class variability (Bruzzone and Carlin, 2006; FGDC, 2008).  Therefore, object-
oriented methods are advantageous when attempting to identify and classify wetlands in accordance 
with the FGDC standard. For example, a pixel-based classification scheme identifying adjacent open 
water and forest wetland pixels would likely separate the two into separate classes due to their spectral 
differences. This is the most significant limitation of the pixel-based classifier’s is its inability to view 
similarity and distance between pixels.  For wetlands exhibiting high spatial patchiness or heterogeneity, 
accurate delineation and classification of the wetland as a whole depends on the ability to group 
adjacent pixels and to represent spectrally different patches within a single wetland polygon.  

 
Object-oriented classifications require two steps.  First, image segmentation, the prerequisite to object-
oriented classification, divides an image into segments or pixel objects by merging adjacent pixels into 
statistically homogeneous groups (Fournier et al, 2007; Repaka et al, 2004).  Variation within a segment 
is minimized using user-identified criteria, and any pixels beyond a set similarity threshold are merged 
into adjacent image segments.  Each segment contains statistical attributes, including the internal pixels’ 
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histogram and additional information derived from the image object such as texture, segment size and 
shape, and relationships to object super or sub-classes (Fournier et al, 2007; Hess et al, 2003; Repaka et 
al, 2004).  Second, object-oriented classifications take advantage of the variety of available segment 
statistics in order to split the segments into information classes. Wetland segmentation could also 
integrate GIS and other ancillary data sources to identify the spatial extent of wetlands (Fournier et al, 
2007; Huan and Zhang, 2008). Hess et al (2003) and Grenier et al (2007) both found segmentation to be 
highly accurate for partitioning wetland and non wetland areas (95% and 80% accuracy, respectively).   
This effort focuses only on image segmentation to facilitate wetland mapping and not automated object 
classification. 

2.2.2. Segmentation Methodology 
 

The segmentation parameter settings best attuned to wetland delineation depend greatly on the spatial 
and spectral resolution of the images to be segmented and the size of the features to be identified.   
Optimal settings would yield an image segmentation with polygons small enough to capture the smallest 
target features, yet large enough to prevent shadows from being isolated into individual polygons. 
Under the FGDC Wetland Mapping Standards, the primary imagery for wetland delineation and 
classification must have a spatial resolution of at least one meter or smaller, is recommended to include 
a color infrared band, and must identify 98% of wetlands larger than 0.5 acres or 2023.4 square meters 
(FGDC, 2008).  To meet these requirements, all segmentation parameter trials were conducted with a 
subset of the USDA Farm Service Agency’s one meter resolution color-infrared National Agricultural 
Imagery Program (NAIP) imagery.     

 
We used a multi-resolution image segmentation algorithm (Definiens Professional Version 5) to test 
image segmentation for wetland mapping. Within the segmentation algorithm, four adjustable 
parameters can be used to adjust the size of the segmented polygons and determine how the segments 
are calculated (Figure 13).  The scale parameter sets a limit on the heterogeneity within each segment. 
The higher the scale parameter is set, the more within-segment variation is allowed, and the larger the 
relative range of polygon sizes.  Low scale parameter values (10-20) result in small image objects relative 
to the image pixel size, while large scale parameter values (100) result in very large super- objects than 
can be further broken down by successive segmentations.  Though adjusting this parameter provides a 
fast way to create larger image objects, its purpose is to ensure that the pixels within each object are 
truly related; object size can be increased by merging adjacent segments together when necessary 
(Definiens AG, 2006).   

 
The other three parameters determine the ratio of color or shape used to segment polygons and the 
degree of polygon compactness and smoothness imposed upon the polygons (Figure 13).  A color and 
shape criterion identifies the relative importance of shape and spectral information used to create 
homogeneous segments.  The total parameter must always equal 1, so when shape is maximized (0.9), 
color comprises only 0.1 of the calculation and when color is maximized (1), only color is used to 
calculate segment homogeneity.  A balanced segmentation would utilize both shape and color at 0.5 to 
create segments.  When the shape parameter is higher than zero, compactness and smoothness are 
invoked to set limits on long or narrow features as well as features with very rough boundaries, 
respectively (Definiens AG, 2006).   

 
In addition, ancillary vector and raster data including GIS layers, actively sensed radar and LIDAR data, 
and additional remote sensing imagery at varied spatial resolutions can be integrated with the primary 
imagery during segmentation without resampling or degrading the ancillary data quality (Fournier et al, 
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2007; Huan and Zhang, 2008).  It should be noted that while data with any spatial resolution can be 
input to a segmentation algorithm, pilot tests suggest that the spatial resolution of included ancillary 
data should be similar in resolution to the primary segmentation imagery.  Tests using 24 meter CTI data 
resulted in very angular, polygonal boundaries between segments rather than the natural, smooth 
boundaries desired for wetland delineation (Figure 14).  In Definiens Professional 5, ancillary data layers 
and primary imagery bands can also be weighted to allow certain layers a greater influence on the 
resulting segmentation.  For example, RADAR and NDVI layers may provide key information for 
identifying forested wetlands, and could be weighted twice as high as accompanying infrared or green 
bands.   

 
In the case of wetlands, image segment need enough internal variation to encompass spatially 
heterogeneous wetlands.  For example, many wetland classes include patches of open water and 
vegetation that would be misclassified by a per-pixel classifier.  The scale of the image segments should 
be large enough to include such patchiness within a single segment, which may also require creating 
multiple image segmentations with different scale and homogeneity  parameters to accommodate 
wetland types with various amounts of internal patchiness or spatial heterogeneity (Fournier et al, 2007; 
Huan and Zhang, 2008; Grenier et al , 2007).  In per-pixel classifiers, a vegetation patch can be identified 
reliably only when pixels fall within ½ to ¼ of the patch’s size (Hunt et al, 2007).  If the same logic also 
holds for identifying patches using image segments, then the 0.5 acre (2024 square meter) target 
wetland mapping unit can be identified by image segments covering at least 500-1000 square meters.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13.  Multi-resolution segmentation dialog box from Definiens Professional 5. (From eCognition (aka, 
Definiens) basic training, URL http://www.rstc.msstate.edu/wfd/ecog/docs/course_material.pdf) 
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2.2.3. Pilot Segmentation Results  
 
A series of segmentation trials were completed with a subset of the 2008 CIR NAIP imagery for Cloquet, 
Minnesota.  Selected results showing the effects of the scale parameter value and the shape/color 
parameter on resulting image segmentations can be seen in Table 5 and Figure 15.  As expected, the 
lowest scale parameter (10) created the largest number of image segments.  This scale parameter was a 
poor choice for wetlands:  the segments were more than five times smaller than the minimum wetland 
size and unnecessarily separated shadows as unique features.  At the highest scale parameters (75-100), 
the opposite was true and segments included so much internal variation that visually distinct classes 
were aggregated.  The optimal scale parameter (50) identified 2-4 times the number of segments as the 
100 scale parameter, and 23 times less than the 10 scale parameters.    It should be noted that due to a 

Figure 14.  Images showing (top) the 24 meter CTI, 
with green areas corresponding to potential 
wetlands;  (middle) the result of a segmentation 
including the CTI data, with each segment outlined 
in black; and (bottom) the segments shown with the 
image they were derived from.  As you can see, the 
CTI blocks are very large and oddly shaped 
compared to the rest of the segments and do not 
accurately conform to the wetland’s natural 
boundaries. 
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random seed used during segmentation, even when repeated with the same imagery and the same 
parameters, will produce slightly different segment boundaries and a slightly different number of image 
objects.  The differences get more pronounced as segment size (scale parameter value) decreases, so 
that at a scale of 100, the segment boundaries are nearly identical and at a scale of 50, only 36% of 
image objects remain identical. 

 
Shape and color parameter combinations tested with the 50 scale parameter value are also shown in 
Table 5 and Figure 15.  The most highly shape-dependent segmentation scheme (shape .9, color .1) was 
almost entirely calculated based on shape, resulting in very compact polygons with few long or narrow 
areas identified only when extremely spectrally unique (such as the roads in Figure 15).  Segmentation 
based primarily upon color (shape .1, color .9) creates polygons with a wider range of sizes and splits 
polygons that otherwise appear spectrally similar.  The balanced approach with shape and color at .5 
emphasizes internal spectral homogeneity while allowing the shape parameter sufficient flexibility to 
group wetland patches with slightly different spectral signatures.  The 50 and 75 scale parameter 
segmentations fit the minimum wetland area (patch identification) requirements very well, and the 
balanced color and shape parameters ensure segment polygons based solidly upon internal spectral 
homogeneity while creating polygons of similar sizes. 

 
Table 5.  Parameters for multi-resolution segmentation trials in Definiens Professional 5.  The area column refers to the 
range of areas in pixel objects containing field GPS points (presumably, wetland objects).  Total image area of the NAIP image 
subset is 27,751,825 square meters. 

Scale 
Parameter 

Shape
/Color 

Compactness 
and 

Smoothness 

No. of 
segments 
in subset 

Area 
(m2) 

Comments 

10 .5/.5 .5 544,324 
61-
107 

Objects much too small. Shadows become 
independent features rather than blending in. 
Very low segmentation heterogeneity threshold 
results in many very similar and adjacent 
polygons. 

50 .5/.5 .5 23,667 
796-
8135 

Can still pull out very small homogeneous areas 
(35 pixels for a pond, for example). Shadows are 
no longer unique features. Segmentation no 
longer artificially splits similar areas. Highest 
detail of the three 50 scale tests. 

50 .9/.1 .5 13,419 
796-

10593 

Higher focus on the shape homogeneity in 
resulting objects, which tends to merge 
otherwise spectrally unique polygons. 

50 .1/.9 .5 10,156 
796-

14386 

Higher focus on spectral homogeneity, which 
merges areas of like color and splits those 
slightly different. 

75 .5/.5 .5 13,170 
1483-
13640 

Larger objects with high internal heterogeneity. 

100 .5/.5 .5 4936 
1485-
23123 

Much larger objects with very high internal 
heterogeneity.  Many image objects were 
lumped with fairly spectrally different, though 
adjacent polygons. 
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Figure 15.  These images show the affects of various segmentation parameters on the size and location of segment 
boundaries in the one meter 2008 CIR NAIP imagery.  From top left, (top row) scale parameter 10, balanced shape and color 
(.5 each) and scale 50, balanced shape and color,  (middle row), scale 50, shape .9, color .1 and scale 50, shape .1 color .9, 
(bottom row) scale 75, balanced shape and color and scale 100, balanced shape and color. 

In-depth visual assessments of the various segmentation results identified the segmentation with scale 
parameter 50 and balanced color and shape parameters as the best fit with one-meter CIR NAIP 
imagery.  In this segmentation, the locations of polygon boundaries and segment sizes adequately fit the 
photo-interpreted land use and land cover.  The segments successfully delineated roads, fields, forest 
stands, wetlands, water bodies, and urban areas, and also separated natural land cover categories, such 
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as open water and floodplain meadow or deciduous and evergreen forests.  To further examine the 
segmentation boundaries for wetlands, the image objects were compared against the current National 
Wetland Inventory (NWI) vector data for Cloquet, MN.  To directly compare the segmentation against 
NWI data, the segmented layer was first exported to a vector layer and input into ArcGIS.  The NWI layer 
was then used as a template to select wetland segments touching the NWI polygons.  As is shown in the 
series of figures below, the wetland polygons from the segmentation layer include water bodies and 
split wetland vegetation from upland vegetation extremely well (Figure 16).  In many areas, the 
segmented wetland polygons identified obvious wetlands that the NWI omitted and delineated the 
wetland boundaries with more realistic, natural variations and much higher detail than the NWI.   
 

 
Figure 16.  The blue areas correspond to Definiens Professional 5 wetland polygons.  Included  
polygons overlapped with areas within the NWI layer.   
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2.2.4. Segmentation Discussion 
 
Depending on the scale parameter setting and the size of the image, segmentation can be extremely 
time consuming and computationally expensive.  Attempts to segment the entire county composite 
image were unsuccessful do to limitations in computing power; however, processing of USGS quarter 
quad tile images were feasible with a desktop computer.Despite the addition time required to segment 
the imagery, working with image objects rather than individual pixels for wetland classification would 
significantly reduce the overall time necessary for wetland mapping and classification (Meinel and 
Neubert, 2004).   
 
The benefits to be gained from segmentation are well worth the added processing steps.  Segments can 
be easily converted to vectors and brought into alternate software programs.  Definiens exports vector 
polygons in shapefile format, which would make them usable in ArcGIS, ERDAS Imagine, and most other 
GIS packages (the shapefile vector data format is an Open Geospatial Consortium standard format, 
which means the source code is universal and public, and ensures that the majority of GIS packages can 
read them).   
 
When working from the segment layer, wetland delineators have only to select, copy, and paste a 
segment or set of segments to add them to the NWI polygon dataset.  The hybrid process of 
segmentation and manually editing, merging, or clipping wetland polygons would be much faster, since 
the segments provide delineators with a ready starting point (Hess et al, 2003).  As noted above, the 
segmented polygons include much more spatial detail and finer-scale edge delineation than polygons 
currently in the NWI dataset.  This extra detail may increase the overall accuracy of the NWI at local 
scales by accounting for seasonal variations and small but important drainage systems otherwise 
omitted by the NWI.   Because the wetland delineation process is automated, Definiens Profession 5 
could be used to both increase wetland boundary detail in the NWI and to keep that level of detail 
consistent among different interpreters.  Even if the level of detail is too high for the NWI, any 
segmented polygons added to the NWI could be simplified and smoothed in ArcGIS – a process which 
could easily be automated – prior to manual editing.  Overall, using Definiens software to obtain 
wetland boundaries either should reduce or eliminate the need for manual edge editing of wetland 
polygons in the NWI.   

 
Since the segmentation uses the spectral data to segment the landscape, any wetlands (regardless of 
location or surrounding land use) with unique spectral characteristics should be discernable with the 
right combination of imagery and ancillary data.  However, to delineate wetlands beneath a forest 
canopy, leaf-off imagery or radar capable of penetrating the canopy would be a prerequisite to accurate 
segmentation.  As long as a wetland is large enough to be detected at the imagery’s spatial resolution, 
ancillary remote sensing and other data should be sufficient to delineate the wetland, though 
classification requires a much more specific set of spectral bands and ancillary data to classify wetlands 
with any degree of accuracy.  When combining images, mosaicking and histogram matching may be 
necessary to ensure that the segments do not identify image edges as segment boundaries. 
 
Care should be taken to ensure that the tiles are edge matched.  Edge matching algorithms available. 
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2.3.  Wetland Typing using Decision Trees 

2.3.1. Wetland Typing Introduction 
 
The mapping of wetlands boundaries is only one goal of the National Wetlands Inventory (NWI).  
Additional wetland characteristics such as classification type are also important goals. The current NWI 
characterizes wetlands using the Cowardin classification system (Cowardin et al., 1979) and the U.S. Fish 
and Wildlife Service (USFWS) Circular 39 classification system (Shaw and Fredine, 1971); however, 
Minnesota’s wetland regulatory agencies have begun advocating the use of wetland plant community 
types (Eggers and Reed, 1997) for use in wetland delineation and permitting. Further work will be 
required to include it in a future update of the NWI. 
 
There are many remote sensing classification techniques, each with unique advantages and 
disadvantages. An unsupervised classification is one common technique (Ozesmi and Bauer, 2002; Sader 
et al., 1995). Unsupervised classification is often applied because it eliminates the need for a time 
consuming training step. Hybrid classifications, described by Jensen (2005), combine unsupervised 
clusters with supervised training sets of known land cover. The training phase involves defining spectral 
signatures of known land cover and then incorporating those signatures into a classification model, 
typically done using the ERDAS software package. Other classification methods use image derivatives to 
discriminate image texture. Vegetation indices such as the normalized difference vegetation index 
(NDVI), the TM Band 4:5 ratio, and the TM tasseled-cap model are used as textural information to 
further discriminate wetlands, particularly forested wetlands (Wright and Gallant, 2007; Hodgson et al., 
1987). Automated processes, however, tend to confuse some types wetlands with other land cover 
classes. This is particular problem with wetland classification because of the temporal variability of 
wetland characteristics over the course of a growing season and is especially a problem with forested 
wetlands whose tree canopies have spectral reflectance characteristics similar to upland forests. 
 
In addition to automated processes, visual interpretation of imagery can be a useful element in the 
classification process. Harvey and Hill (2001) reported that these semi-automated maps resulted in 
wetland maps that were 9% more accurate results than completely automated approaches. An expert 
classifier is one that is guided by an interpreter, the “expert,” and can incorporate attributes such as 
image texture, topography, and other GIS based datasets that can aid the automated processes with the 
hope of ultimately increasing classification accuracy. The Knowledge Engineer, an ERDAS software 
product, is an expert classifier that was evaluated in this study. An expert classification system was 
chosen because of its ability to combine traditional automated processes with expert knowledge to 
provide the optimal accuracy and efficiency in classifying wetland type. This study will focus on 
classifying seven Eggers and Reed forested wetland types: deciduous forest, floodplain forest, shrub 
carr, alder swamp, coniferous swamp, coniferous bog, and open bog. 
 

2.3.2. Wetland Typing Methods 

2.3.2.1. Field Data Collection 
 
The Fond du Lac Reservation, located northwest of the City of Cloquet, Minnesota, was selected as the 
pilot study area because of the availability of high quality GIS data sets, namely a reservation wide 
wetland inventory completed in 2008 and high resolution (2 ft) topography data. A field study was 
conducted July 13-17, 2009 by researchers from the University of Minnesota, including one MN Certified 
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Wetland Delineator. 250 points were randomly generated within wetland types in a stratified random 
sampling scheme. The points were loaded into Trimble GeoXT and GeoXH handheld GPS units, which are 
sub-meter accurate under optimal conditions. A minimum of 50 positions were collected for each GPS 
point collected during the field study. Data were post processed and corrected using Pathfinder Office.  

2.3.2.2. Imagery and GIS Data Layers 
 
Two primary sources of aerial photography were used throughout the study. The National Agriculture 
Imagery Program (NAIP) imagery from 2008 has four spectral bands (B, G, R, NIR), a spatial resolution of 
1m, and was collected mid to late August in the study area. In addition, the MN Department of Natural 
Resources (DNR) acquired imagery flown by Keystone Aerial Surveys Inc. in May 2009, prior to leaf out in 
the study area. This imagery has four spectral bands (B, G, R, NIR) and a spatial resolution of 0.5m.  
 
Other data sets that currently comprise variables in the decision tree include the Natural Resources 
Conservation Service (NRCS) Soil Survey Geographic (SSURGO) Database, specifically spatial data and soil 
pH attributes, and the compound topographic index (CTI) that can be used as a measure of soil wetness. 
In addition, a wetland inventory was completed in 2008 in the area of the Fond du Lac Reservation. This 
dataset was used in preliminary decision tree development. 

2.3.2.3. Conceptual Decision Tree 
 
A conceptual tree was constructed in order to visualize the classification process. Figure 17 is the 
conceptual tree for forested wetland classification, based on Eggers and Reed’s (1997) wetland 
community classification key. The tree does not follow the Eggers and Reed key exactly, as each 
directional node in the tree must be based on a difference in vegetative cover detectable by remote 
sensing or another GIS variable.  
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Figure 17. Conceptual classification tree for Eggers and Reed wetland types. 

 

2.3.2.4. Determination of Variables 
 
A portion of the field collected data was used in combination with imagery and ancillary GIS data sets to 
examine potential differences between wetland types. Eighty-one polygons were created around 
wetland points of different classes. Polygons were created manually by an interpreter to ensure wetland 
homogeneity. These polygons were used to generate statistics for a number of variables in an effort to 
distinguish between wetland types. Polygons were also created using Definiens eCognition software and 
then those polygons surrounding the wetland points were extracted and aggregated by wetland type. 
Statistics based on interpreter and eCognition polygons were examined. The high resolution imagery 
was degraded to 1m and 3m data sets in order to decrease the effects of solar angle, shadows, and 
speckle common to imagery with very high spatial resolution.  
 
Statistics have been generated for the following attributes for use in the decision tree classifier:  

 individual B, G, R, NIR bands for 2008 NAIP imagery and 2009 leaf off imagery 

 NDVI for 2008 NAIP imagery and 2009 leaf off imagery 

 NDVI difference image (leaf on – leaf off) 

 Soil pH 
 

2.3.2.5. ERDAS Knowledge Engineer 
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ERDAS Knowledge Engineer is a per pixel decision tree based classifier that is comprised of end or 
intermediate hypotheses, rules, and variables. End hypotheses are output classes from Knowledge 
Engineer, in this case the end hypotheses are the seven Eggers and Reed forested wetland types. 
Intermediate hypothesis are classes that are nodes in the decision tree but not output from the model, 
such as coniferous and deciduous land cover, from which further classification can take place. 
Hypotheses are evaluated by rules, which determine whether or not an input variable meets a given 
criterion. A variable can be defined from a raster or vector data set. For example, a variable could be the 
calculated NDVI layer, and a rule could be that if the NDVI value for a pixel is greater than 0.4 then it 
would fall within the intermediate hypothesis of vegetation. The decision tree is based on a logical 
progression. All variables must be verified if a rule is to be correct, and a hypothesis is true if one or 
more rules relating to the hypothesis are correct. Figure 18 shows the decision tree being developed for 
this study. 

 

 
Figure 18. Sample variables, rules, and intermediate hypotheses in ERDAS Knowledge Engineer. 

 

2.3.2.6. Accuracy Assessment 
 
Accuracy assessments were conducted using 146 field collected, forested wetland points. A 10m buffer 
was created surrounding each point, and accuracy was assessed based on the majority of the classified 
wetland type within the buffer. This method ensures classification homogeneity, reduces errors due to 
GPS inaccuracy, and reduces the chance that a single pixel classified incorrectly in a group of correctly 
classified pixels negatively affects the accuracy assessment.  
 

2.3.3. Wetland Typing Results 
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2.3.3.1. Data Collection 
 
GPS post processing accuracy reports show that approximately 50% of positions collected were sub-
meter accurate, approximately 80% of positions were accurate to two meters, and approximately 96% 
of positions were accurate to five meters. Table 6, below, is an example of the field data collected. A 
total of 151 wetland (146 forested) and 31 upland data points were collected. 
 
Table 6. Sample of wetland data collected during July, 2009. 

ID Wet/Up 
Eggers & 

Reed Type 
Cowardin 

Type 
Cowardin 
Hydrology 

Vegetation 

11 Wetland Open Bog PEM3 B 
labrador tea, bog rosemary, 

sphagnum 

14 Wetland Shrub-Carr PSS1 B 
dogwoods, other mixed deciduous 

shrubs 

260 Wetland Alder Thicket PSS1 B alder, some spruce, tamarack 

15 Wetland Alder Thicket PSS1 B 
alders, some dogwood, sedge, 

bluejoint grass 

362 Wetland 
Hardwood 

Swamp 
PFO1 B black ash, birch, maple, some alder 

101 Upland 
   

red pine plantation, no understory 
vegetation 

67 Wetland Coniferous Bog PFO2 B 
tamarack, bog rosemary, labrador 

tea, black spruce 

64 Wetland Coniferous Bog PFO2 B tamarack, bog birch, alders 

97 Upland 
   

area of aspen regrowth, scattered 
red pine and basswood 

60 Wetland 
Coniferous 

Swamp 
PFO4 B cedar, balsam fir, tamarack, sedge 

112 Wetland Coniferous Bog PFO2 B tamarack, black spruce 

 

2.3.3.2. Determination of Variables 
 
Image statistics for interpreter and eCognition polygons were examined. eCognition polygons exhibited 
a different mean, higher variability, and higher standard deviation than those created manually by the 
interpreter. Further statistics used in determining differences between vegetative classes were 
calculated using the interpreter based polygons. 
 
Image statistics for 1m and 3m degraded images were examined. Statistics calculated for data sets 
degraded to 3m showed less variability and smaller standard deviations per wetland class, and thus the 
high resolution images were degraded to 3m for further classification. Degradation reduces noise in the 
data and decreases the computer processing time considerably. 
 
Image statistics for several variables were examined. Differences were found between vegetative 
classes, and the following describes the use of variables in the decision tree classifier:  

 The NIR band was extracted from both the 2008 NAIP leaf on image and the 2009 leaf off image. 
The lowest NIR value was 23 for all wetland classes. All NIR values less than 23 were assumed to 
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be water, as clear deep water reflects NIR very poorly, and were not included in the decision 
tree. 

 The NDVI was calculated for the 2008 NAIP leaf on imagery and normalized to a 0 – 1 scale. This 
gives a good indication of maximum annual greenness, as the imagery was flown during late 
summer. If an NDVI value was low for the leaf on image, it can be generally assumed that the 
area is not vegetated at any point during the year.  

 The NDVI was calculated for the 2009 leaf off imagery and normalized to a 0 – 1 scale. This gives 
a good indication of minimum annual greenness, as the imagery was flown prior to deciduous 
leaf out. A high NDVI value for this date is generally indicative of evergreen vegetation. 

 An NDVI difference image was created by subtracting the leaf off NDVI from the leaf on NDVI. 
This eliminates background greenness that is present year round. A high NDVI difference value 
indicates substantial vegetative growth. Figure 19 shows the NDVI difference for six wetland 
classes (hardwood swamp and floodplain forest are lumped into a deciduous forest category). 
The mean NDVI difference values for the deciduous and coniferous classes were 0.15 and 0.01, 
respectively.  The NDVI difference value is used to distinguish deciduous and evergreen classes 
in the decision tree. 
 

 
 

Figure 19. NDVI difference for six wetland classes. Error bars are one standard deviation. 

 

 Soil pH for each class was derived from the SSURGO database and was used to distinguish 
coniferous and open bogs from coniferous swamps. The mean soil pH for the coniferous 
swamps was 4.36, while the mean soil pH for the coniferous and open bogs combined was 3.86. 
It is noted that shrub carr and alder swamps also tend to have a low pH but have already been 
separated as deciduous vegetation at this point. 

 Subtle differences were noted in some of the individual bands that could be used to 
differentiate wetland classes, specifically coniferous and open bogs as well as alder swamps and 
shrub carrs. The mean leaf off NIR value for shrub carrs and alder swamps were 162 and 182, 
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respectively. The mean leaf off B band value for coniferous bogs and open bogs were 119 and 
138, respectively. However, these differences alone are weak andadditional discriminatory 
variables will be needed for adequate class separation. 

 

2.3.3.3. ERDAS Knowledge Engineer 
 
The ERDAS Knowledge Engineer uses a linear model of the variables, rules, and hypotheses for each 
class rather than a bi-directional decision tree (Figure 18). This makes it difficult to visually assess the 
model as a whole. A binary decision tree better represents the process (Figure 20). 
 

 
 

Figure 20. Draft decision tree used for wetland classification. 

 

2.3.3.4. Classification 
 
The results of the preliminary classification are shown in Figure 21, below. Figure 22 is a zoomed portion 
of the classification map. 
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Figure 21. Preliminary forested wetland classification map. 
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Figure 22. Zoomed portion of preliminary wetland classification map. 
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2.3.3.5. Accuracy Assessment 
 
The overall accuracy of the preliminary decision tree classifier was 47.9% (Table 7).  
 
Table 7. Error Matrix for preliminary forested wetland classification. 

 

 

Reference Data 

HW 
Swamp 

Shrub 
Carr 

Alder 
Thicket 

Conif. 
Swamp 

Conif. 
Bog 

Open 
Bog 

Total 
User's 

Accuracy 

M
 a

p
 D

at
a 

HW Swamp 11 4 4 4 2 1 26 42.3% 

Shrub Carr 15 9 4 0 0 0 28 32.1% 

Alder Thicket 8 20 13 0 0 1 42 31.0% 

Conif. Swamp 1 0 0 9 5 0 15 60.0% 

Conif. Bog 0 0 0 3 23 0 26 88.5% 

Open Bog 0 0 0 0 1 2 3 66.7% 

Totals 35 33 21 16 31 4 141 
 

Producer's 
Accuracy 

31.4% 27.3% 61.9% 56.3% 74.2% 50.0% 
  

Overall Accuracy 47.9% 

 

2.3.4. Wetland Typing Discussion 
 

2.3.4.1. Data Collection 
 
At the time of the field study, the open bog class was not considered for classification. Future iterations 
of the forested classification decision tree may not include open bogs because of the lack of reference 
information. Reference information may also be obtained using the Minnesota County Biological Survey 
(MCBS) dataset. 

2.3.4.2. Determination of Variables 
 
The determination of variables is the major shortcoming of the wetland classification process thus far. 
There are multiple steps that require improvement, perhaps most importantly the removal of emergent 
vegetation from the “vegetation” intermediate hypothesis. The model currently overestimates shrub 
carr and alder thicket, and qualitative investigation shows that many of these areas are actually wet 
meadow, shallow marsh, or other vegetative communities dominated by herbaceous cover. Analysis of 
imagery statistics for herbaceous wetland classes will be examined and a rule for removal of herbaceous 
vegetation will be established in future iterations of the decision tree model. 
 
Currently the model relies on the Fond du Lac wetland inventory to determine if an area is wetland or 
upland. The inventory was created by expert interpreters and thus the confidence of the 
wetland/upland discrimination power of the inventory is high. The inventory has been helpful in model 
development for this specific area, but no such data set exists throughout Minnesota. The use of the CTI 
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to discriminate wetland and upland is being evaluated and will be incorporated into future iterations of 
the decision tree model. 
 
The current version of the model does not discriminate floodplain forests and hardwood swamps. 
Analysis of imagery statistics reveals that these two wetland classes have very similar spectral 
reflectance characteristics and it is not possible to confidently distinguish between these floodplain 
forests and hardwood swamps using imagery alone. Ancillary data sets based on topographic data are 
being evaluated.  
 
The current version of the model relies on several weak differences between classes, including those 
based on single band imagery and on soil pH. Soil pH data are taken from the SSURGO dataset, which 
maps soils at a landscape scale. Fine scale pH differences will not be distinguishable using this data set. 
Furthermore, soils data are not yet available statewide in digital formats, although the development of 
digital data is ongoing. Further investigation will be conducted to determine differences between 
wetland types that can be combined with soils and single band image data to provide a more confident 
distinction of wetland classes. 
 
The use of radar data is also being evaluated for its use in discriminating vegetated wetland classes. 
Numerous studies (Hess et al., 1990; Hess et al., 1995; Whitcomb et al., 2007; Henderson and Lewis, 
2008) report the usefulness of radar data in discriminating between wetland and upland, as well as 
vegetative species differentiation. Future studies will be conducted to determine the usefulness of radar 
data in the Fond du Lac study area. However, radar images are not currently available statewide and are 
expensive to obtain.  
 
The expert classification and decision tree methods allow for a variety of local data to be used when 
discriminating wetland types. The applicability of data varies throughout the state depending on 
dominant land use. Remote sensing techniques that distinguish forested wetland types may need to be 
further refined in the northern lakes and forests region, whereas springtime determination of 
agricultural wetlands will likely be the focus of the studies in the western corn belt plains. The expert 
classifier model allows for use of data sets that are the most applicable for a particular area. 

2.3.5. Wetland Typing Conclusions 
 
As shown in Table 7, the overall accuracy of the preliminary forested wetland classification is 47.9%, 
which is not adequate to meet the FGDC mandated thematic accuracy standard of 85%. Further 
modeling is expected to enhance the accuracy somewhat. Accurately classifying forested wetlands is a 
difficult task for a variety of reasons, and further investigation will be needed to determine whether it is 
possible to confidently and accurately classify forested wetlands without expert interpretation using 
Knowledge Engineer or other expert classifiers. The availability of high resolution leaf off and leaf on 
aerial photography as well as high resolution topography data has the potential to be the basis for more 
accurate automated classification. Further investigation will continue with the goal of determining this 
potential. 

2.4.  Wetland Mapping using RADAR Imagery 

2.4.1 Introduction to Wetland Mapping with Radar Imagery 
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Wetland boundaries are dynamic in both space and time, with fluctuation depending on many 
hydrologic factors such as precipitation, evapotranspiration, and ground water flow.  Traditional wetland 
mapping methods which rely on aerial photograph interpretation and simple classification techniques 
have several disadvantages: they are typically based on single-date imagery, are often several years old, 
may not be representative of the current state of the environment, and do not take into account the 
seasonal nature of wetland boundaries.  Such traditional maps are not reliable for two particular 
wetland types: forested and ephemeral.       
 
Separating forested wetlands from forested uplands with optical imagery is problematic because the 
imagery, even if collected during leaf-off conditions, may not reveal the underlying hydrology of a site. 
The collection of optical imagery can also be hindered by cloud cover (Baker, Lawrence, Montagne, & 
Patten, 2006; E. W. Ramsey, 1995; E. W. Ramsey et al., 1998; Töyrä, Pietroniro, Martz, & Prowse, 2002), 
thus potentially missing a critical period for ephemeral wetland assessment. 
 
Radar imagery may provide a solution to traditional wetland mapping concerns. In areas of frequent 
cloud cover, optical imagery has an obvious disadvantage. Long wave radar signals, on the other hand, 
are not sensitive to the atmosphere, nor require daylight hours for acquisition, and thereby increase the 
possibility for frequent and quality data collection (Parmuchi, Karszenbaum, & Kandus, 2002; Townsend, 
2001). A review of radar detection of wetlands by Henderson & Lewis (2008) illustrates the complexity 
and dependence on local environmental conditions for wetland mapping accuracy. 
 
Wetland maps made using satellite imagery with larger spectral and spatial resolution incorporate more 
information about surface characteristics.  Empirical models can be developed to estimate soil moisture 
and potential wetness, thus increasing the feasibility of differentiating between a broad range of 
wetland types (Arzandeh & Wang, 2002; Li & Chen, 2005; Ozesmi & Bauer, 2002; E. W. Ramsey, Nelson, 
& Sapkota, 1998).  There are many different methods to use radar imagery to map wetlands; however, 
the classification technique which is the most accurate may not always be the most feasible.  
 
Rule-based classifiers require prior knowledge about the surface properties such as: radar speckle and 
radar backscattering effects from changes in soil moisture and dielectric properties of vegetation and 
soil (Kasischke et al., 2003; Parmuchi et al., 2002).  On the other hand, object-based classifiers take into 
account neighboring pixels to classify segments of homogeneous boundaries using measures such as 
texture, shape, pattern, size, as well spectral-radiometric information.   This method is also called image 
segmentation and is computationally expensive (Grenier et al., 2007; Harken & Sugumaran, 2005; 
Stuckens, Coppin, & Bauer, 2000).     
 
Evaluation is needed of multiple combinations of input datasets and classification techniques in order to 
strike a balance between accuracy, economic and feasibility.  Using radar imagery and modern 
classification techniques, the accuracy of locating and differentiating between wetland types is 
increased and the time it would traditionally take to map difficult wetland types is significantly reduced. 

2.4.2 Planned Methodology 
  
A series of comparisons will be drawn from the results of several classification techniques with the 
following data inputs: different types of radar imagery, high resolution topography and potential 
wetness models, soil survey maps, and leaf-on and leaf-off optical imagery.  Accuracy will be assessed by 
utilizing ground reference data from pilot sites.  Evaluation of the results will ultimately be used to 
design a recommendation for the most effective and feasible wetland mapping statewide. 
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The mapping methods discussed here will utilize Radarsat-2 and PALSAR imagery (C- and L-bands, 5.66 
cm and 23.5 cm wavelength, respectively).  The dynamic nature of wetland areas will be explored by 
acquiring imagery for three dates per year (May, July, and September) in pilot study areas over a two 
year period.  Radar backscatter directly relates to the surface properties and the spectral band utilized.  
Longer wavelengths are more able to penetrate through rough or densely vegetated surfaces and reach 
the soil surface (Campbell, J.B, 2007).  The C and L wavelengths will be evaluated for accuracy in 
mapping forested wetlands. 
The radar images will be acquired with varying signal polarizations (horizontal-horizontal, HH; vertical-
vertical, VV; horizontal-vertical, HV; and vertical-horizontal, VH).  Polarization signifies the orientation of 
the energy transmitted or received by the radar antenna, which is directly related to the physical and 
electrical properties of surface features (Campbell, J.B, 2007).  Combinations of polarizations have been 
shown to detect vegetation differences and differentiate between ground cover types reasonably well 
(Baghdadi, Bernier, Gauthier, & Neeson, 2001; Henderson & Lewis, 2008; Slatton, Crawford, & Chang, 
2008).  Polarization, wavelength, and combinations thereof, will be evaluated for accuracy in 
differentiating various wetland types. 
 
Provided resources for field data collection are available, relationships between measured soil moisture 
and backscatter or polarization effects will be developed to estimate soil moisture with remotely sensed 
data.  Soil moisture maps are important for identifying the hydrology of an area. Using empirical models, 
the differentiation between a broader range of wetland types is possible (Arzandeh & Wang, 2002; Li & 
Chen, 2005; Ozesmi & Bauer, 2002; E. W. Ramsey, Nelson, & Sapkota, 1998).  If resources are not 
available or feasible, other empirical models found in the literature for estimating soil moisture with 
radar imagery will be explored.      
 
The reference data will be collected from randomly distributed points (the minimum number of points 
for statistical significance is to be determined), generated within both pilot study areas. The reference 
points will be revisited at least three times per season over two years of this project (during times 
coincident with radar image acquisition). The field procedures will involve locating and physically visiting 
each point with a GPS unit, identifying the dominant wetland type and taking notes on vegetation 
species, approximating the ground cover density, measuring the soil moisture content within a specific 
area surrounding the point (to be determined) using a time domain reflectometry (TDR) soil moisture 
probe, and taking representative photographs. This intensive field work will determine how soil 
moisture and other observed characteristics change seasonally, from year to year, and within different 
wetland types.  

The classification techniques that will be explored include: a) supervised classification with combined 
optical and radar imagery and using ground reference data as training for the classifier algorithm; b) 
image segmentation using combined optical and radar imagery; and c) wetland probability maps, using 
decision tree classifier with combined optical and radar imagery and soil moisture measured in the field 
pilot study areas.  

Each of the above classification techniques for wetland mapping will be compared to traditional 
methods and the relative feasibility of each technique will be determined.  Accuracy assessment results 
will show which method offers both the highest accuracy for specific wetland types and the most 
feasible implementation for large geographical areas.  The final results will be used to develop a 
recommendation for the most cost-effective and reliable statewide wetland mapping. 
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2.4.3 Expected Results 
 
Results from this research will substantially improve the information available to wetland mapping 
personnel and those charged with identifying restorable wetlands, mapping ecosystem function, and 
quantifying wetland change.  This additional information is expected to save time and money for 
mapping wetlands that are traditionally difficult to map, such as forested and ephemeral wetlands.  The 
seasonal behavior of different wetland types will be better understood by monitoring both the effects of 
radar backscatter via multi-temporal imagery and actual soil moisture content measured on the ground 
in pilot study areas.   

 

Empirical models of radar-derived soil moisture will be used to determine the seasonal and inter-annual 
surface water cycle dynamics of the study sites. Existing approaches for determining soil moisture from 
radar data will be evaluated (Kasischke et al., 2003; Lu et al., 2005; Zribi & Dechambre, 2003).  This 
research will also seek to develop new techniques to decouple the soil moisture signal from vegetation 
in order to differentiate between more wetland types (Frappart, Seyler, Martinez, León, & Cazenave, 
2005; E. Ramsey, Rangoonwala, Middleton, & Lu, 2009). 
 
The following specific questions will be answered by this research: 1) How can radar imagery improve 
mapping accuracy of two important wetland types found in Minnesota: forested and ephemeral 
wetlands; 2) What are the data requirements for maximizing classification accuracy and which method 
has the most reliable results; and 3) What is the feasibility, both economic and operational, of statewide 
application of each classification method.  

Research has shown that combining data from multiple sources and sensors can increase the overall 
accuracy of wetland classification results anywhere from 15-20% (Baker, Lawrence, Montagne, & Patten, 
2006; E. W. Ramsey, 1995; E. W. Ramsey et al., 1998; Töyrä, Pietroniro, Martz, & Prowse, 2002).  Though 
data acquisition for this research will be relatively expensive and the evaluation of all of the wetland 
mapping methods with multiple input data types will be computationally intensive, there may be a 
significant cost savings in the end due to the time savings compared to traditional heads-up digitizing.   

Instead of starting off with a single image and manually delineating boundaries, information about 
surface features is gathered from multiple types of data (optical, radar, topographical, soil survey) and 
used in a classifying algorithm.  Ground reference data in pilot study areas will aid in both in the 
implementation of the classification and accuracy assessment of the results.  The resulting wetland map 
can be given to wetland mapping professionals as an aid in traditional heads-up digitizing, especially for 
the notoriously difficult to map wetlands.  

Challenges remain in implementing the new classification techniques, particularly in terms of the 
underused input data such as radar imagery and high resolution topographic data.  Research has been 
done on the observed backscatter and speckle from radar data as a function of the sub-canopy 
vegetation, surface dielectric properties, and surface orientation with respect to the satellite 
(Wdowinski et al., 2008; Zribi & Dechambre, 2003).  More information is needed on the effects of 
polarization, radar signal pulse and magnitude, and soil moisture content effects on radar backscatter.   

2.4.4 RADAR Summary and Conclusions 
 
Results from the classification techniques and combinations of input data explored in this research will 
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contribute to the field of wetland science and management significantly.  By starting off broad and 
evaluating several different methods, the scope can be narrowed in on the most feasible and accurate 
technique.   

In this research, surface hydrologic cycle dynamics, as measured by multi-temporal satellite-based radar 
image data, will be examined. This data will be used in conjunction with optical imagery and other 
ancillary data (e.g. soil survey data and topographical models) to develop innovative mapping methods 
to locate and classify difficult to map wetlands (e.g. ephemeral and forested wetlands). These methods 
will be tested using ground reference data and are expected to achieve mapping accuracies higher than 
those achieved using existing traditional methods. 
Ultimately, this research will produce the following: needed testing of new radar technologies, methods 
for more frequent and more accurate wetland mapping for monitoring purposes, much needed data on 
the hydrologic cycle dynamics of wetlands, and better information about water retention in wetland 
landscapes.  

2.5.  Field Wetland Data Collection in Carlton County 
 
A field data collection trip was conducted from July 12-17, 2009 in the Fond du Lac Native American 
reservation in Carlton County, MN.  The purpose of the trip was to develop a reference data set that 
could be used to test the techniques developed in the wetland tying work described herein and 
subsequent projects.  A total of 182 points (151 wetland, 31 upland) were visited.  Table 8 summarizes 
the field sites by Cowardin Code.  Figure 23 shows the site locations.  Data collected included location, 
vegetation type(s), wetland type(s), general site description, and panoramic and canopy photos. 
 
Table 8. Field wetland site summary by Cowardin Code 

Number of Sites Cowardin Code 

5 PEM1 

1 PEM2 

37 PFO1 

4 PFO2 

42 PFO4 

59 PSS1 

2 PSS3 
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Figure 23. Left: Field sampled points (red) over wetland boundaries (tan) in 
Fond du Lac reservation (Carlton County, MN). Right: a wetland in the 
study area. 

 

3. Recommendations and Protocol for Wetland Mapping in the Metro Area 

3.1.  General Recommendations 
 
The results presented above suggest that an ideal geospatial dataset for wetland mapping, whether for 
automated analysis or interpretation by analysts, would include recent high resolution color infra-red 
images in both leaf-on and leaf-off conditions, high resolution LIDAR data providing both a bare earth 
DEM and vegetation height information, RADAR image data for several dates in spring and summer, and 
comprehensive soil type data for the study area.  The TCMA has the most geospatial data available for 
any location in Minnesota, but even this is not sufficient to create such an idea dataset.  Thus, a wetland 
mapping approach for the TCMA must identify the most useful of the available data types and analysis 
approaches.   The following are general recommendations for conducting an NWI update in the TCMA: 
 

 Base image data for interpretation: 2008 NAIP 1 meter color infra-red imagery.  NAIP imagery 
was collected in Minnesota in 2009 but it does not have a color infra-red band.  An important 
characteristic of infra-red images is that water and saturated areas appear significantly darker 
than non-wet areas because of the absorption of infra-red wavelengths by water.  Thus, while 
the 2009 NAIP images are newer and will provide a more recent wetland map, the spectral 
information present in the 2008 images is likely to be more advantageous in both manual 
interpretation and image segmentation. 

 Ancillary image data: 2009 NAIP.  The new NAIP could be viewed side-by-side with the 2009 
images, providing improved spectral and temporal information. 
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 Elevation data: LIDAR DEMs where available (soon to be statewide), National Elevation Data in 
LIDAR coverage gaps.  Elevation data are critical for identifying depressional areas that may not 
be readily visible on optical imagery.   

 Soils data: NRCS SSURGO layers.  The SSURGO database, while at relatively coarse spatial 
resolution, provides useful information about the general soil characteristics of an area.  
Parameters drawn from the database, such as hydric and poorly-drained designations and soil 
acidity data, can be used to distinguish some commonly confused wetland types – particularly in 
the Eggers and Reed classification system. 

 Image preprocessing:  The base image data should be segmented using an object oriented 
algorithm prior to interpretation.  While very time consuming initially, creating image segments 
will substantially reduce manual interpretation time and subjectivity in drawing wetland polygon 
boundaries. 

 Classification system: The Cowardin classification system should be the main wetland typing 
method used; however, the Eggers and Reed type for each wetland should be identified during 
the interpretation process.  Increasing nationwide adoption of the Eggers and Reed indicates 
that failing to collect such data would be a substantial oversight – particularly given the difficulty 
of developing a robust crosswalk between Cowardin and Eggers and Reed. 

 

3.2. Mapping Protocol 
 
The following is a set of detailed guidelines and protocol steps for mapping wetlands in the TCMA.  The 
project steps are presented in order: data acquisition, pre-interpretation data processing, data display 
and interpretation, post processing, delivery, and quality control. 
 

3.2.1 Data Types and Software 
 
The following data types should be acquired for use in this project: 

 2008 National Agriculture Imaging Program (NAIP) images for the study area 

 2009 National Agriculture Imaging Program (NAIP) images for the study area 

 Spring leaf-off imagery 

 USDA NRCS Soil Survey Geographic (SSURGO) soils data 

 High resolution LiDAR DEMs where available 

 National Elevation Data at 10 meter spatial resolution 

 Metro counties contour maps 

 MN DNR hydrology dataset (rivers, lakes, etc.) 

 Optical images from other years as desired (e.g. 2005 Mark Hurd) 

 USGS quarter quadrangle tile index from MN DNR 

 Minnesota ecoregions layer from MN DNR 
 
Software: 

 ESRI ArcGIS 

 Definiens Server 7 (or later) 

 Python GDAL library 

 TauDEM hydrology extension for ArcGIS 
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3.2.2 Preprocessing 
 If necessary, prepare the summer aerial imagery and any available spring leaf-off imagery (all 

four bands) for image segmentation by splitting them into quarter quadrangle tiles using the tile 
index.  This can be automated using Python and the GDAL library. 

 Use the batch feature in Definiens to automate segmentation of the NAIP tiles using the 
following parameters: 

o Color/shape: 0.5 each 
o Scale 50-70 (lower for smaller wetlands) 

 Generalize segment boundaries by a reasonable amount to reduce the number of vertices.  This 
will make subsequent editing of segment boundaries much easier and will not significantly affect 
the segments shapes. 

 Export segments from Definiens as ArcGIS Shapefiles.  Ensure they are exported with 
projection/coordinate information. 

 Create a Normalized Difference Vegetation Index layer from the NAIP infra-red and red bands 

 Threshold the NDVI layer to include only pixels with values greater than 0.2 

 Use the LiDAR or NED elevation layers to create a Compound Topographic Index layer using the 
d-infinity water flow algorithm in TauDEM 

 Compute a rudimentary wetland likelihood map by using a Boolean “AND” operator with the 
CTI,  SSURGO, and NDVI as input, where a pixel is identified as a wetland only if the CTI is above 
an appropriate threshold (we suggest ~11), the NDVI is above 0.2, and the soil type is either 
Hydric or Poorly Drained.  This likelihood map is intended to assist the interpreter in identifying 
areas that may be wetlands, not to replace the interpreter. 

3.2.3 Data display and Interpretation 
 We recommend against viewing the old NWI polygons at any point in this procedure so as not to 

bias the results. The old NWI could perhaps be used after the initial interpretation as a 
comparison. 

 A dual monitor setup is recommended if possible. 

 Display in ArcGIS or other appropriate software the NAIP tile of interest, the wetland likelihood 
map, a topography layer (LiDAR, NED), and the image segments.  

 Display NAIP images and segments for each adjacent NAIP tile so that local context can be used 
to inform the interpretation process at the edges of the tile of interest. 

 For each segment: 
o Determine whether it is wetland or upland using the interpreter’s best professional 

judgment.   
o If the segment is wetland, record the Cowardin and Eggers & Reed (E&R) types in the 

ArcGIS table associated with the segment layer.  We recommend this be done using a 
constrained attribute domain to minimize data entry errors. 

o Edit the boundaries of the segment using the ArcGIS feature editing tools so that the 
boundaries correspond to the natural wetland edges. 

3.2.4 Data Post-processing  and Delivery 
 Dissolve (merge) adjacent segments that have the same wetland type.  This operation should 

not be done if the E&R types are different. 

 Delete upland segments from the segment layer. 

 Deliver final segment layer as NWI wetland map.  The map should be delivered at a scale desired 
by MN DNR, either at the quarter quad, full quad, or county, and in a GIS format such as a 
geodatabase.   
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 The product should be fully compliant with all USFWS requirements so that it is ready for upload 
to the main NWI. 

3.2.5 Quality Assurance / Quality Control 
 The mapping contractor should perform comprehensive in-house validation of the data 

products both during and subsequent to interpretation work. These should include positional 
and thematic accuracy assessments.   

 If a free text data entry approach is used (e.g. the interpreters type in rather than select 
Cowardin codes for wetland segments), attribute validity checks should be used to ensure 
consistency. 

4. Conclusions 
 
The research presented in this document is an in-depth analysis of selected wetland mapping 
techniques for the TCMA.  While some work remains to be completed, such as the wetland typing using 
decision trees approach, the results are sufficient to draw conclusions and to make recommendations 
for the optimal approach to accomplishing the objectives of the Minnesota NWI update.  The protocol 
provided above is expected to be suitable for meeting or exceeding the FGDC wetland mapping standard 
and thus allowing for the inclusion of Minnesota’s updated wetland maps in the USFWS National 
Wetland Inventory. 
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