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1. Introduction 

1.1.  Objectives 
This document is a report to the Minnesota Department of Natural Resources (MNDNR) that provides a 
review of research conducted on wetland mapping methods for the Arrowhead, or boreal forest, region 
of Minnesota (the counties of Carlton, Cook, Itasca, Koochiching, Lake, and St. Louis).  This report is 
intended as a companion to the report, “Wetland Mapping Methods for the Twin Cities Metropolitan 
Area,” which was submitted to MNDNR in June of 2009.  Given herein are recommendations for wetland 
mapping methods appropriate for the ongoing National Wetlands Inventory update in Minnesota.  This 
document is provided to MNDNR by the University of Minnesota’s Remote Sensing and Geospatial 
Analysis Lab (RSGAL) in partial fulfillment of a contractual agreement between the two parties.  The 
structure of this report is as follows:  1) detailed summaries of the research undertaken by RSGAL under 
this agreement, 2) Recommendations and a suggested protocol for wetland mapping in the Arrowhead. 

1.2.  Background 
 
For background information on wetland mapping we respectfully refer the reader to the report 
“Wetland Mapping Methods for the Twin Cities Metropolitan Area,” which was submitted to MNDNR in 
June of 2009.  This report should be viewed as an addendum to the previous work. 

Wetlands are jointly defined by the U.S. Army Corps of Engineers (USACE) and the U.S. Environmental 
Protection Agency (EPA) as: “those areas that are inundated or saturated by surface or ground water at 
a frequency and duration to support, and under normal circumstances do support, a prevalence of 
vegetation typically adapted for life in saturated soil conditions” (Federal Register, 1982; Federal 
Register, 1980). Wetlands are a valuable natural resource as they play a crucial role in the ecology of a 
landscape. Wetlands function as a buffer to open water bodies and provide important ecosystem 
functions by maintaining water quality by filtering nutrients and pollutants, storing floodwater and 
mitigating its effects on water bodies, and also providing habitat to a variety of wildlife that have 
adapted to life in saturated environments. Wetlands also play a role in the global carbon cycle, acting as 
both carbon sources and sinks.  

Wetland loss has occurred at an alarming rate. In a 200 year period between colonization and the 
1980’s, the lower 48 states lost an estimated 53% wetland acreage due to a variety of human activities 
such as agriculture, urbanization and development, and pollution (Dahl, 1990; Johnston, 1989). Over 
50% of Minnesota’s 3.6 million hectares(ha) of wetlands have been lost. The concentration of wetland 
loss is greatest, over 80%, in southern Minnesota and the Red River Valley where wetlands were drained 
for agriculture. Urbanization causes small wetland area losses, but significantly alters a wetland’s 
physical, biological, and chemical properties (Johnston, 1989). The loss of wetlands continues, but 
trends appear to be that wetland loss is slowing (Dahl and Johnson, 1991). Accurate mapping of the 
spatial distribution of wetlands is an important tool for understanding the effects of wetland loss, and 
may contribute to policy decisions influencing land use (Baker, et al. 2006). 
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2. Methods/Results 

2.1. Wetland Mapping using Decision Trees 

2.1.1. Decision Trees Introduction 

Mapping wetlands can be achieved through a variety of methodologies ranging from field investigation 
to remote wetland assessment. Remote sensing has been used as a wetland mapping tool since the 
1960’s (Cowardin and Myers, 1974) but early assessments were not accurate enough for many practical 
applications. However, with recent advances in remote sensing technologies, it may be possible to map 
wetlands in a large geographic area with sufficient accuracy in an efficient and cost-effective manner. 
The following study is a survey of the usefulness of various geospatial data types in wetland mapping 
using decision tree classifiers (e.g. RandomForests™, CART™, etc.). 

2.1.2. Decision Trees Methods 

2.1.2.1. Pilot Study Areas 

Two areas, one located in the St. Paul – Minneapolis metropolitan area and one located in the northern 
forested region of Minnesota, were selected as pilot areas for the study. Pilot areas were selected to be 
areas in which high quality geospatial datasets were available. In addition, local government agencies in 
both areas had recently performed wetland inventories. The GIS datasets and wetlands inventories were 
excellent tools to study automated wetland classification. The location of the two pilot study areas is 
shown in Figure 1, below. 
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FIGURE 1 – LOCATION OF PILOT STUDY AREAS 

City of Chanhassen, Minnesota 

The metro study area is located within the limits of the City of Chanhassen, Carver County, Minnesota, a 
southwestern suburb of Minneapolis with an area of approximately 22.9 mi2.  Land use within the city is 
primarily medium density residential housing with some areas of industrial and dedicated open space. 
Wetlands, lakes, ponds, and rivers account for approximately 26% of the city’s surface area (City of 
Chanhassen, 2006). The City of Chanhassen completed an update to its Surface Water Management Plan 
(SWMP) in 2006. Wetlands and water features throughout the city were identified and observed in the 
field, and mapping of features throughout the city was completed using a combination of GPS 
delineation and image interpretation. Further methodology is described in the City of City of 
Chanhassen SWMP (2006). 

In addition to the wetland mapping conducted as a part of the Chanhassen SWMP, high resolution LiDAR 
elevation data was available for Carver County. The LiDAR data was acquired as a digital elevation model 
(DEM) with 3m horizontal spatial resolution.   

Fond du Lac Reservation, Minnesota 

The Fond du Lac Reservation, located northwest of the City of Cloquet, Minnesota, was selected as the 
pilot area for the northern forested area. The Fond du Lac Reservation has an area of approximately 
150 mi2.  Land cover is primarily dominated by both deciduous and evergreen forests and low density 
residential housing. Wetlands and water bodies account for approximately 38% of the Reservation’s 
surface area. The Fond du Lac Reservation completed a reservation wide wetland inventory in 2008. The 
wetland inventory was completed primarily by manual photo interpretation, and was used along with 
other ancillary data sets as a guide in development of training areas for wetland classification.  

In addition to the reservation wide wetland inventory, radar imagery and spring leaf off imagery were 
also acquired for the area. The Radar data acquired for the Fond du Lac Reservation were collected on 
June 15, 2009 from RADARSAT-2, co-operated by the Canadian Space Agency (CSA) and MacDonald 
Dettwiler and Associates Ltd. (MDA).  The data acquired were Fine Quad-Polarization, C-band (5.6 cm 
wavelength) imagery with WGS 84 geographic projection and 4.73m pixel spacing.  Four polarizations 
are available from RADARSAT-2 data, horizontal-horizontal (HH), horizontal-vertical (HV), vertical-
vertical (VV), and vertical-horizontal (VH). Each pixel in each polarization is represented by a real and 
imaginary 16-bit unsigned integer, and as a result, Radar images do not look like a typical optical image.  
The real values describe the mean magnitude, or backscattering, of the reflected target whereas the 
imaginary values describe the complex behavior of the scattering mechanisms of the target (Raney, 
1998).  Reflectivity values of Radar imagery typically have a wide range in value that can span several 
factors of ten; thus, Radar imagery is converted to a logarithmic form using decibel values (Frulla, 1998).  
After converting to decibel values, the imagery used in this study was georectified using 30 ground 
control points with a root mean square error (RMSE) of 1.5m and resampled to 3m pixels using the 
nearest neighbor resampling technique. Leaf off aerial imagery was acquired for the several counties in 
northeastern Minnesota during the spring of 2009. The imagery contained four spectral bands (color 
and infrared) and had a horizontal spatial resolution of 0.5m. 

2.1.2.2. Field Data Collection 

Field validation data was necessary to assess the accuracy of the wetland classification to be performed 
in the Fond du Lac pilot area. A field study was conducted July 13-17, 2009 by researchers from the 
University of Minnesota, including one MN Certified Wetland Delineator. A stratified random sampling 
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scheme was used within wetland types to generate a sample of 250 wetland points. An additional 150 
points were randomly generated within uplands. All points were generated within areas of public or 
reservation owned land throughout the study area. The points were loaded into Trimble GeoXT and 
GeoXH handheld GPS units, which are sub-meter accurate under optimal conditions. A minimum of 50 
positions were collected for each GPS point collected during the field study. Data were post processed 
and corrected using Pathfinder Office. Due to time restraints, and in order to maximize the wetland data 
points collected per wetland class, some points were collected on the fly. A total of 195 points were 
collected during the week of field work. The initial data collection was focused on shrub and forested 
wetlands. The small number of validation points, as well as oversampling of shrub and forested wetland 
classes, may adversely affect overall accuracy assessments when considering all wetland types within 
Fond du Lac Reservation. Additional field validation data will be collected during the summer of 2010 in 
order to provide a more robust validation sample to be used in accuracy assessment. 

2.1.2.3. Automated Wetland Classification 

Wetlands were classified to the Cowardin class level (Table 1) and a simplified plant community 
classification developed by the Minnesota DNR. This modified wetland type classification was developed 
specifically for the remote sensing-based update of the NWI.  

Table 1 – Cowardin Wetland Classes 

Cowardin Code1 Description 

PEM Palustrine Emergent 

PSS Palustrine Scrub Shrub 

PFO Palustrine Forested 

L Lacustrine 

PUB Palustrine Unconsolidated Bottom 
1
 Cowardin codes are taken from Cowardin et al. (1974). 

 

Table 2 and Table 3 show the wetland composition in Chanhassen and Fond du Lac by Cowardin classes 
and DNR modified wetland types, respectively. Wetland data for the City of Chanhassen were collected 
during the 2006 SWMP update and data for Fond du Lac are derived from the 2008 wetland inventory. 

TABLE 2 – Summary of WetlANd Types by CoWardin Class 

   Chanhassen Fond du Lac 

Class Count Acres % of Total Count Acres % of Total 

PEM 305 2304 58.4% 826 4311 11.8% 

PFO 40 19 0.5% 1797 15776 43.1% 

PSS 3 1 0.02% 2334 13584 37.1% 

W1  189 1621 41.1% 309 2949 8.1% 

Total Features 537 3944 100.0% 5266 36619 100.0% 

Study Area  14515 27.2%  96119 38.1% 
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1
 Water class includes Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins. 

 

 

 

TABLE 3 – Summary of Wetland Types by DNR Simplified Plant Communities 

   Chanhassen Fond du Lac 

Class Count Acres % of Total Count Acres % of Total 

Coniferous Wetland 0 0 0.0% 883 9743 26.6% 

Deep Marsh 52 228 5.8% 148 1045 2.9% 

Hardwood Wetland 47 25 0.6% 914 6033 16.5% 

Seasonally Flooded 10 5 0.1% 0 0 0.0% 

Shallow Marsh 132 1410 35.8% 270 2013 5.5% 

Shrub Wetland 3 1 0.02% 2334 13584 37.1% 

Water1 191 1635 41.5% 309 2949 8.1% 

Wet Meadow 102 641 16.2% 408 1253 3.4% 

Total Features 537 3944 100.0% 5266 36619 100.0% 

Study Area  14515 27.2%  96119 38.1% 

1
 Water class includes Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins. 

 

2.1.2.4. Decision Tree Classification 

Automated wetland classification was done using decision tree classification, a type of expert 
classification. The decision tree classifier was developed using See5 software package developed by 
Rulequest, Inc. (http://rulequest.com) and the NLCD Mapping Tool, developed by MDA Ltd. Three steps 
are involved in decision tree classification: data sampling, data mining and decision tree creation, and 
classification. A detailed, stepwise, guide to the processes used throughout wetland classification can be 
found in Appendix E. 

2.1.2.5. Data Sampling 

The first step involves assembling training data points and data sets to be sampled. Training data for the 
Chanhassen classification were derived from the city’s 2006 SWMP data. Wetland polygons were edited 
in GIS to correct for subsequent wetland loss and creation as a part of the Highway 212 construction 
project. Five thousand random points were generated throughout the City in both known wetland and 
known upland areas for a total of 10,000 sample points.  

Training data for Fond du Lac were created using a combination of techniques because, unlike 
Chanhassen, the Reservation’s wetland assessment did not include field data verification. Training 
polygons were developed in geographically similar locations to the field collected data points in areas 
that shared like spectral characteristics. In an effort to obtain a large enough number of sample data 
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points in each training polygon, and at the same time capture spectral variety within wetland types, a 
segmentation was created using 2008 NAIP and the 2009 spring leaf off imagery in Definiens’ eCognition 
(http://www.ecognition.com). Five random sample points were generated within each eCognition 
segment for a total of 5,412 sample points. 

The NLCD Sampling Tool v2.0, a utility included in the NLCD Mapping Tool, was used to create an input 
data file for use in See5. The NLCD Sampling Tool extracts values for each input raster file at each 
sampling point of known wetland type. This generates a tabular data file which contains a row for each 
sampling point with comma separated values for each input raster file. Table 4 shows the data that were 
available for use in classification in both the Chanhassen and Fond du Lac study areas. 

 

TABLE 4 – Data Available for Wetland Classification 

Data Layer Fond du Lac Chanhassen 

Aerial Imagery 

2008 NAIP Leaf On Imagery (R,G,B,IR) X X 

2009 Spring Leaf Off Imagery (R,G,B,IR) X  

Radar Imagery (Quad Pol) X  

Aerial Imagery – Derived 

2008 NAIP NDVI X X 

2009 Leaf Off NDVI X  

NDVI Difference X  

Topography 

10m NED DEM X  

2-ft Hi-Res LiDAR Based DEM  X 

Topography Derivations 

CTI (3m LiDAR derived)  X 

CTI (10m NED derived) X  

CTI (24m LiDAR degrade derived)  X 

Slope (3m LiDAR derived)  X 

Slope (10m NED derived) X  

Curvature (3m LiDAR derived)  X 

Curvature (10m NED derived) X  

Other Data 

SSURGO (Drainage Class) X X 

 

2.1.2.6. Data Mining 
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The second step involves data mining algorithms developed by Rulequest, Inc. as a part of their See5 
software package. See5 mines for patterns within the data tables created using the NLCD Sampling Tool. 
The boost, fuzzy thresholds, and global pruning options were enabled for classifier construction. The 
result of the data mining process is a decision tree that is used to produce a classification. Decision trees 
were constructed to perform wetland/upland classification, wetland classification to the Cowardin class 
level, and wetland classification using the DNR simplified plant communities. The output file also 
includes an accuracy assessment done using all of the input sampling points as a measure of error 
inherent in the resultant decision tree. The cross-validation option was also enabled to provide an 
estimated accuracy assessment of sampling data withheld from several extra iterations of decision tree 
generation. These options are described further in Appendix E. 

2.1.2.7. Classification 

The final step is to produce a classification. The outcome classes are the same as those from the training 
data and the area classified is the geometric intersection of all input raster datasets. The classification 
was performed using the See5 Classifier Tool, a part of the NLCD Mapping Tool. The additional option to 
produce a classification confidence image was also selected. A wetland/upland classification was 
performed on the entire study area. Wetland type classifications were performed only on those areas 
classified as wetlands with at least 70% confidence in the initial wetland/upland classification. Even 
though the 70% wetland mask was applied, uplands remained a potential output class in the wetland 
type classifications. A small percentage of pixels initially classified as wetlands were subsequently 
classified as uplands and were considered as such in the final classifications and accuracy assessments. 

Several wetland classifications were performed in an effort to determine the effects of various datasets 
on the classification accuracy. Classifications for both Chanhassen and Fond du Lac were performed 
using the best available data, shown in Table 4, the best available data without topography, and only the 
NAIP imagery. Additional classifications in Chanhassen were performed to compare differences between 
high resolution (2-ft) and low resolution (10m) topography data as well as differences in the Compound 
Topographic Index (CTI) and the surface curvature topographic derivations. Additional classifications in 
Fond du Lac were performed to determine effect of Radar data and leaf-off imagery on the classification 
accuracy. Table 5 shows which data were used for each classification. 

 

TABLE 5 – Data Used for Wetland Classification 

Data Layer 

Classification Scenario 

Chanhassen Fond du Lac 
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ata
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N
A
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n
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Aerial Imagery 

2008 NAIP Leaf On Imagery (R,G,B,IR) X X X X X X X X X X X X X X 

2009 Spring Leaf Off Imagery (R,G,B,IR)         X X  X X  

Radar Imagery (Quad Pol)         X  X X   

Aerial Imagery – Derived 
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2008 NAIP NDVI X X X X X X X X X X X X X X 

2009 Leaf Off NDVI         X X  X X  

NDVI Difference         X X  X X  

Topography 

10m NED DEM    X X X   X X X    

2-ft Hi-Res LiDAR Based DEM X X X            

Topography Derivations 

CTI (3m LiDAR derived) X X             

CTI (10m NED derived)    X X    X X X    

CTI (24m LiDAR degrade derived) X X             

Slope (3m LiDAR derived) X X X            

Slope (10m NED derived)    X X X   X X X    

Curvature (3m LiDAR derived) X  X            

Curvature (10m NED derived)    X  X   X X X    

Other Data 

SSURGO (Drainage Class) X X X X X  X  X X X X   

 

2.1.2.8. Other Classifications 

Traditional unsupervised and supervised classifications were performed in Imagine 2010, developed by 
Erdas, Inc. (http://www.erdas.com) for both pilot study areas in addition to the decision tree 
classification. Unsupervised classification was performed using the ISODATA algorithm and 20 classes. 
Classes were reclassified based on summary statistics of areas of known wetland types and visual 
inspection of the classification. Supervised classification was performed using the same training 
locations as were used for decision tree classification.  

2.1.3. Decision Trees Accuracy Assessment 

The accuracy of each classification performed was assessed using field validated points. Randomly 
generated training data included some wetland classes comprising a very small portion of the total 
wetland area within the study area. While wetland classifications were performed for all wetland types 
present in the training sample, accuracy assessments were performed for wetland types with more than 
10 field validation points. However, because the dominant wetland classes could be misclassified as the 
less dominant wetland classes, all wetland types were reported in error matrices. Error matrices were 
calculated using RS Accuracy (Joe Knight, http://knightlab.org) and formatted as described in Congalton 
and Green (1999).  

2.1.3.1. Chanhassen Accuracy Assessment Methodology 

In Chanhassen, a random sample of 10,000 points was generated throughout the city. Wetland classes 
were extracted from the SWMP for each point. Single wetland polygons in the SWMP with two or more 
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wetland types noted were considered to be the more dominant wetland type. The sampling scheme was 
not stratified so the total reference set consisted of 7343 upland points and 2657 wetland points. The 
greater number of upland points would bias the accuracy assessment, so upland reference data were 
removed when calculating accuracy for wetland types.  

Wet features in Chanhassen mostly consisted of water and emergent wetlands, as shown in Table 1 and 
Table 2 Wetland type classification by Cowardin class included water (L, PUB, PAB), emergent (PEM), 
scrub shrub (PSS), and forested (PFO) wetlands. Scrub shrub comprised a very small area of the wetland 
cover in the city and contained only five field validation points, and was therefore removed from the 
accuracy assessment. Wetland type classification by DNR simplified plant communities included water, 
wet meadow, shallow marsh, deep marsh, shrub wetland, seasonally flooded, hardwood wetland 
classes. Seasonally flooded and shrub wetlands each had less than 10 field validation points and were 
removed from the accuracy assessment.  

2.1.3.2. Fond du Lac Accuracy Assessment Methodology 

The 195 field collected data points were used as validation data in the accuracy assessment for the Fond 
du Lac study area. These reference data are independent of the training polygons used in decision tree 
development. The initial goal of the study was to concentrate on classifying forested wetland types and 
therefore most field collected points consisted of scrub shrub and forested wetlands. Additional field 
work in 2010 will supplement the existing field validation data in order to provide for a more robust 
sample across all wetland types. 

Wet features in Fond du Lac consisted mostly of forested and scrub shrub type wetlands. Wetland type 
classification by Cowardin class included water (L, PUB, PAB), emergent (PEM), scrub shrub (PSS), and 
forested (PFO) wetlands. Most of the field validation points were scrub shrub and forested wetlands, so 
emergent wetlands were not included in the accuracy assessment. Wetland type classification by DNR 
simplified plant communities included water, wet meadow, shallow marsh, deep marsh, shrub wetland, 
hardwood wetland, and coniferous wetland. The wet meadow, shallow marsh, and deep marsh classes 
each had less than 10 field validation points and were removed from the accuracy assessment. 

2.1.4. Decision Trees Results 

Numerous iterations of the NLCD Sampling Tool and See5 were performed using a variety of 
combinations of datasets in an effort to determine the effect of each of these datasets on the accuracy 
of the resulting wetland classification. The results for wetland/upland, Cowardin class, and simplified 
plant community classifications are presented below.  

2.1.4.1. City of Chanhassen Results 

The following sections present the results of wetland classifications for the City of Chanhassen. For 
comparison purposes, the 2008 NAIP aerial photograph is provided at a city scale in Figure A.1 and at a 
local scale in Figure A.2 to show the land cover in the area. Chanhassen SWMP wetlands are shown by 
Cowardin class at city and local scales in Figure A.3 and Figure A.4, respectively, and by DNR simplified 
plant community type at city and local scales in Figure A.5 and Figure A.6, respectively. Additional 
figures showing each classification described at both large and small scales can also be found in 
Appendix A. Full error matrices for each classification can be found in Appendix C. 

 Best Performing Classification Scenario 

The best performing classification for the City of Chanhassen used as many data sets as were available 
for the area, including NAIP Imagery, a high resolution LiDAR-based DEM, the Soil Survey Geodatabase 
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(SSURGO) drainage class, and a several imagery and topography derivations as shown in Table 5. The 
wetland/upland accuracy for the best performing classification, Hi-Res Topo (All Data), was 93.1%, as 
shown in Table 6. Cowardin class accuracy was 85.7% (Table 7), and DNR simplified plant community 
type accuracy was 76.5% (Table 8).  
Figure 2 and  
Figure 3 show the best classification for simplified plant community type at a city and local scale, 
respectively, with the SWMP wetlands shown for comparison purposes. Figure A.7 and Figure A.8 show 
the Hi-Res Topo (All Data) classification for Cowardin class at city and local scales, respectively.  

 

TABLE 6 – HI-RES TOPO (ALL DATA) – W/U ERROR MATRIX 

  

 Reference Data 

M
ap

 D
at

a 

 Upland Wetland Map Total 

Upland 6945 296 7241 

Wetland 398 2361 2759 

Ref. Total 7343 2657 10000 

 

Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

Upland 94.6 Upland 95.9 

Wetland 88.9  Wetland 85.6 

     

OVERALL ACCURACY = 9306 / 10000 = 93.1% 

 

 

TABLE 7 – HI-RES TOPO (ALL DATA)  – COWARDIN CLASS ERROR MATRIX 

  

 Reference Data 

M
ap

 D
at

a 

 UPL PEM W PFO PSS Map 
Total 

UPL 0 230 34 11 0 276 

PEM 0 1262 53 8 0 1323 

W 0 41 1013 0 0 1054 

PFO 0 1 0 2 0 3 

PSS 0 0 0 0 0 0 
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Ref. Total 0 1534 1101 21 0 2656 

  Total N does not include reference uplands or wetland classes with less than 10 
reference data points. See Section 2.4 for details. 

 

 

Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

UPL 0 UPL 0 

PEM 95  PEM 82 

W 96  W 92 

PFO 67  PFO 10 

PSS 0  PSS 0 

 

OVERALL ACCURACY = 2275 / 2656 = 85.7% 

OVERALL ACCURACY (upland errors removed) = 2275 / 2380 = 95.6% 

 

 

 

TABLE 8 – HI-RES TOPO (ALL DATA)  – SIMPLIFIED TYPES ERROR MATRIX 

   

  Reference Data 

M
ap

 D
at

a 

 Upland 
Shallow 
Marsh 

Water 
Wet 

Meadow 
Deep 

Marsh 
Hardwood 
Wetland 

Seasonally 
Flooded 

Shrub 
Wetland 

Map 
Total 

Upland 0 126 42 104 37 12 0 0 321 

Shallow 
Marsh 

0 743 23 64 30 2 0 0 862 

Water 0 22 1005 11 39 0 0 0 1077 

Wet 
Meadow 

0 37 14 251 14 3 0 0 319 

Deep 
Marsh 

0 9 17 7 31 2 0 0 68 

Hardwood 
Wetland 

0 2 0 2 0 2 0 0 6 

Seasonally 
Flooded 

0 0 0 1 0 0 0 0 1 
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Shrub 
Wetland 

0 0 0 0 1 0 0 0 1 

Ref. Total 0 939 1101 442 152 21 0 0 2655 

  
Total N does not include reference uplands or wetland classes with less than 10 reference data points. 
See Section 2.4 for details. 

 

Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

Upland 0 Upland 0 

Shallow Marsh 79  Shallow Marsh 86 

Water 91  Water 93 

Wet Meadow 57  Wet Meadow 79 

Deep Marsh 20  Deep Marsh 46 

Hardwood Wetland 10  Hardwood Wetland 33 

Seasonally Flooded 0  Seasonally Flooded 0 

Shrub Wetland 0  Shrub Wetland 0 

 

OVERALL ACCURACY = 2032 / 2655 = 76.5% 

OVERALL ACCURACY (upland errors removed) = 2032 / 2334 = 87.1% 
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Figure 2 – Hi-Res Topo (All Data) – Simplified type – city view (with SWMP wetlands) 
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Figure 3 – Hi-Res Topo (All Data)  – Simplified type – local view (with SWMP wetlands) 
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NED and No Topography Scenario 

The best performing classification scenario, Hi-Res Topo (All Data), was performed using a 3m resolution 
LiDAR based DEM. Additional classifications were performed using the U.S. Geological Survey’s (USGS) 
National Elevation Dataset (NED) with a spatial resolution of approximately 10m. Classifications were 
also performed without topography or topographic derivates as input datasets.  

Effects of Resolution 

The wetland/upland accuracy for the classification NED Topo (All Data) was 91.6%, as shown in Table 
C.1. Cowardin class accuracy was 84.4% (Table C.2), and DNR simplified plant community type accuracy 
was 76.2% (Table C.3). Figure A.9 and Figure A.10 show the NED Topo (All Data) classification for 
Cowardin class at city and local scales, respectively. Figure A.11 and Figure A.12 show the classification 
for DNR simplified plant community type at city and local scales, respectively. 

The wetland/upland accuracy for the classification No Topo was 88.7%, as shown in Table C.4. Cowardin 
class accuracy was 79.8% (Table C.5), and DNR simplified plant community type accuracy was 60.6% 
(Table C.6). Figure A.13 and Figure A.14 show the No Topo classification for Cowardin class at city and 
local scales, respectively. Figure A.15 and Figure A.16 show the classification for DNR simplified plant 
community type at city and local scales, respectively. 

Effects of Topographic Derivations 

The best performing classification scenario, Hi-Res Topo (All Data), was performed using several 
topographic derivations including the compound topographic index (CTI), slope, and surface curvature. 
Slope was included in all topographic classifications, but additional classifications were performed 
without curvature and without the CTI as input datasets. Such classifications were performed for both 
high resolution and NED data. 

Compound Topographic Index 

The wetland/upland accuracy for the classification Hi-Res Topo (CTI) was 92.4%, as shown in Table C.7. 
Cowardin class accuracy was 84.1% (Table C.8), and DNR simplified plant community type accuracy was 
75.1% (Table C.9). Figure A.17 and Figure A.18 show the Hi-Res Topo (CTI) classification for Cowardin 
class at city and local scales, respectively. Figure A.19 and Figure A.20 show the classification for DNR 
simplified plant community type at city and local scales, respectively. 

The wetland/upland accuracy for the classification NED Topo (CTI) was 91.4% (Table C.10). Cowardin 
class accuracy was 84.8% (Table C.11), and DNR simplified plant community type accuracy was 76.6% 
(Table C.12). Figure A.21 and Figure A.22 show the NED Topo (CTI) classification for Cowardin class at 
city and local scales, respectively. Figure A.23 and Figure A.24 show the classification for DNR simplified 
plant community type at city and local scales, respectively. 

Curvature 

The wetland/upland accuracy for the classification Hi-Res Topo (Curvature) was 92.5%, as shown in Table 
C.13. Cowardin class accuracy was 84.2% (Table C.14), and DNR simplified plant community type 
accuracy was 75.7% (Table C.15). Figure A.25 and Figure A.26 show the Hi-Res Topo (Curvature) 
classification for Cowardin class at city and local scales, respectively. Figure A.27 and Figure A.28 show 
the classification for DNR simplified plant community type at city and local scales, respectively. 

The wetland/upland accuracy for the classification NED Topo (Curvature) was 91.3% (Table C.16). 
Cowardin class accuracy was 84.0% (Table C.17), and DNR simplified plant community type accuracy was 
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76.2% (Table C.18). Figure A.29 and Figure A.30 show the NED Topo (Curvature) classification for 
Cowardin class at city and local scales, respectively. Figure A.31 and Figure A.32 show the classification 
for DNR simplified plant community type at city and local scales, respectively. 

Other Classification Scenarios 

Several other classifications were performed in addition to those described above for comparison 
purposes. A classification using only the NAIP imagery was performed, as well as traditional 
unsupervised and supervised classifications.  

Imagery Only 

The wetland/upland accuracy for the classification NAIP Only was 78.3%, as shown in Table C.19. 
Cowardin class accuracy was 54.7% (Table C.20), and DNR simplified plant community type accuracy was 
60.6% (Table C.21). Figure A.33 and Figure A.34 show the NAIP Only classification for Cowardin class at 
city and local scales, respectively. Figure A.35 and Figure A.36 show the classification for DNR simplified 
plant community type at city and local scales, respectively. 

Unsupervised Classification 

The wetland/upland accuracy for the unsupervised classification was 52.5%, as shown in Table C.22. 
Cowardin class accuracy was 61.4% (Table C.23). Figure A.37 and Figure A.38 show the unsupervised 
classification for Cowardin class at city and local scales, respectively. No unsupervised classification was 
performed for the DNR simplified plant community types. 

Supervised Classification 

The wetland/upland accuracy for the supervised classification was 53.3%, as shown in Table C.24. 
Cowardin class accuracy was 57.8% (Table C.25). Figure A.39 and Figure A.40 show the supervised 
classification for Cowardin class at city and local scales, respectively. No supervised classification was 
performed for the DNR simplified plant community types. 

See5 Cross-Validation Accuracy 

See5 produces a measure of accuracy during its optional cross validation step. Table 9 and Table 10 
show a comparison between the accuracy assessment using reference points and the See5 cross 
validation accuracy. 

 

 

TABLE 9 – CHANHASSEN COMPARISON – SEE5 CROSS VALIDATION VS. ACCURACY ASSESSMENT 

 

 Hi-Res Topo NED Topo No Topo NAIP Only 

X-Val Assess X-Val Assess X-Val Assess See5 Assess 

Wetland/Upland 89.9 93.1 86.2 91.6 81.8 88.7 68.5 78.3 

Cowardin Class 85.0 85.7 81.8 84.4 77.4 79.8 64.2 54.7 

Simplified Type 81.3 76.5 76.6 76.2 67.2 60.6 59.7 43.4 
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TABLE 10 – CHANHASSEN COMPARISON – SEE5 CROSS VALIDATION VS. ACCURACY ASSESSMENT (CONT’D) 

 

 Hi-Res Topo 

Curvature Only 

NED Topo 

Curvature Only 

Hi-Res Topo 

CTI Only 

NED Topo 

CTI Only 

X-Val Assess X-Val Assess X-Val Assess X-Val Assess 

Wetland/Upland 85.7 92.5 85.1 91.4 89.6 92.4 86.0 91.4 

Cowardin Class 81.1 84.2 80.7 84.0 84.6 84.1 81.7 84.8 

Simplified Type 77.1 75.7 76.0 76.6 79.4 75.1 77.0 76.6 

 

2.1.4.2. Fond du Lac Reservation Results 

The following sections present the results of wetland classifications for the Fond du Lac Reservation. For 
comparison purposes, the 2008 NAIP aerial photograph is provided at a city scale in Figure B.1 and at a 
local scale in Figure B.2 to show the land cover in the area. Additional figures showing each classification 
described at both large and small scales can be found in Appendix B. Full error matrices for each 
classification can be found in Appendix D. 

Best Performing Classification Scenario 

The best performing classification for the Fond du Lac Reservation used the highest quality datasets 
available for the area, including NAIP imagery, leaf-off imagery, Radar imagery, NED, SSURGO drainage 
class, and several imagery and topography derivations as shown in Table 5. The wetland/upland 
accuracy for the best classification, All Data, was 79.0% (Table 11). Cowardin class accuracy was 58.2% 
(Table 12), and DNR simplified plant community type accuracy was 55.7% (Table 13). Figure 4 and Figure 
5 show the best classification for the simplified plant community type at reservation and local scales, 
respectively.  Figure B.3 and Figure B.4 show the All Data classification for Cowardin class at reservation 
and local scales, respectively.  

 

TABLE 11 – FOND DU LAC ALL DATA CLASSIFICATION – W/U ERROR MATRIX 

  

 Reference Data 

M
ap

 D
at

a 

 Upland Wetland Map Total 

Upland 27 37 64 

Wetland 4 127 131 

Ref. Total 31 164 195 
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Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

Upland 87 Upland 42 

Wetland 77  Wetland 97 

     

OVERALL ACCURACY = 154 / 195 = 79.0% 

 

 

TABLE 12 – FOND DU LAC ALL DATA CLASSIFICATION – COWARDIN CLASS ERROR MATRIX 

  

 Reference Data 

M
ap

 D
at

a 

 PSS UPL PFO PEM W Map 
Total 

PSS 31 0 14 0 0 45 

UPL 14 0 20 0 1 35 

PFO 8 0 47 0 0 55 

PEM 8 0 1 0 0 9 

W 0 0 0 0 14 14 

Ref. Total 61 0 82 0 15 158 

  Total N does not include reference uplands or wetland classes with less than 10 
reference data points. See Section 2.4 for details. 

 

Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

PSS 69 PSS 51 

UPL 0  UPL 0 

PFO 85  PFO 57 

PEM 18  PEM 0 

W 100  W 93 

     

OVERALL ACCURACY = 92 / 158 = 58.2% 

OVERALL ACCURACY (upland errors removed) = 92 / 123 = 74.8% 
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TABLE 13 – FOND DU LAC ALL DATA CLASSIFICATION – SIMPLIFIED TYPE ERROR MATRIX 

   

  Reference Data 

M
ap

 D
at

a 

 Shrub 
Wetland 

Upland Coniferous 
Wetland 

Shallow 
Marsh 

Water Hardwood 
Wetland 

Deep 
Marsh 

Wet 
Meadow 

Map 
Total 

Shrub 
Wetland 

34 0 11 0 0 6 0 0 51 

Upland 13 0 7 0 1 12 0 0 33 

Coniferous 
Wetland 

3 0 25 0 0 2 0 0 30 

Shallow 
Marsh 

8 0 1 0 0 1 0 0 10 

Water 0 0 0 0 14 0 0 0 14 

Hardwood 
Wetland 

2 0 2 0 0 15 0 0 19 

Deep 
Marsh 

0 0 0 0 0 0 0 0 0 

Wet 
Meadow 

1 0 0 0 0 0 0 0 1 

Ref. Total 61 0 46 0 15 36 0 0 158 

  Total N does not include reference uplands or wetland classes with less than 10 reference data points. 
See Section 2.4 for details. 

 

Producer’s Accuracy  User’s Accuracy 

Reference Percent Map Percent 

Shrub Wetland 56 Shrub Wetland 67 

Upland 0  Upland 0 

Coniferous Wetland 54  Coniferous Wetland 83 

Shallow Marsh 0  Shallow Marsh 0 

Water 93  Water 100 

Hardwood Wetland 42  Hardwood Wetland 79 

Deep Marsh 0  Deep Marsh 0 

Wet Meadow 0  Wet Meadow 0 

 

OVERALL ACCURACY = 88 / 158 = 55.7% 

OVERALL ACCURACY (upland errors removed) = 88 / 125 = 70.4% 
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FIGURE 4 – FOND DU LAC ALL DATA CLASSIFICATION – SIMPLIFIED TYPE – RESERVATION VIEW 
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FIGURE 5 – FOND DU LAC ALL DATA CLASSIFICATION – SIMPLIFIED TYPE – LOCAL VIEW 
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Effects of Types of Imagery 

The best performing classification scenario, Fond du Lac All Data, was performed using several types of 
aerial and satellite imagery including the 2008 NAIP imagery, 2009 leaf-off imagery, and Radar imagery. 
Additional classifications were performed without each of these data sets in an effort to determine their 
effect on classification accuracy.  

Radar Imagery 

The wetland/upland accuracy for the classification No radar was 77.9%, as shown in Table D.1. Cowardin 
class accuracy was 53.8% (Table D.2), and DNR simplified plant community type accuracy was 53.2% 
(Table D.3). Figure B.5 and Figure B.6 show the No radar classification for Cowardin class at reservation 
and local scales, respectively. Figure B.7 and Figure B.8 show the classification for DNR simplified plant 
community type at reservation and local scales, respectively. 

Spring Imagery 

The wetland/upland accuracy for the classification No Leaf-off was 77.4%, as shown in Table D.4. 
Cowardin dass accuracy was 59.5% (Table D.5), and DNR simplified plant community type accuracy was 
57.6% (Table D.6). Figure B.9 and Figure B.10 show the No Leaf-off classification for Cowardin class at 
reservation and local scales, respectively. Figure B.11 and Figure B.12 show the classification for DNR 
simplified plant community type at reservation and local scales, respectively. 

Other Classification Scenarios 

Several other classifications were performed in addition to those described above for comparison 
purposes. Classifications using the all data without topography, only NAIP and leaf-off imagery, only 
NAIP imagery, and traditional unsupervised and supervised classifications were performed. 

No Topography 

The wetland/upland accuracy for the classification No Topo was 71.3%, as shown in Table D.7. Cowardin 
dass accuracy was 44.3% (Table D.8), and DNR simplified plant community type accuracy was 43.0% 
(Table D.9). Figure B.13 and Figure B.14 show the No Topo classification for Cowardin class at 
reservation and local scales, respectively. Figure B.15 and Figure B.16 show the classification for DNR 
simplified plant community type at city and local scales, respectively. 

Imagery Only 

The wetland/upland accuracy for the classification NAIP & Leaf-Off was 50.3%, as shown in Table D.10. 
Cowardin class accuracy was 29.1% (Table D.11), and DNR simplified plant community type accuracy was 
31.6% (Table D.12). Figure B.17 and Figure B.18 show the NAIP & Leaf-Off classification for Cowardin 
class at reservation and local scales, respectively. Figure B.19 and Figure B.20 show the classification for 
DNR simplified plant community type at reservation and local scales, respectively. 

The wetland/upland accuracy for the classification NAIP Only was 41.5%, as shown in Table D.13. 
Cowardin class accuracy was 25.9% (Table D.14), and DNR simplified plant community type accuracy was 
23.4% (Table D.15). Figure B.21 and Figure B.22 show the NAIP Only classification for Cowardin class at 
reservation and local scales, respectively. Figure B.23 and Figure B.24 show the classification for DNR 
simplified plant community type at reservation and local scales, respectively. 
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Unsupervised Classification 

The wetland/upland accuracy for the unsupervised classification was 74.4%, as shown in Table D.16. 
Cowardin class accuracy was 32.9% (Table D.17). Figure B.25 and Figure B.26 show the unsupervised 
classification for Cowardin class at reservation and local scales, respectively. No unsupervised 
classification was performed for the DNR simplified plant community types. 

Supervised Classification 

The wetland/upland accuracy for the supervised classification was 80.5%, as shown in Table D.18. 
Cowardin class accuracy was 54.4% (Table D.19). Figure B.27 and Figure B.28 show the supervised 
classification for Cowardin class at reservation and local scales, respectively. No supervised classification 
was performed for the DNR simplified plant community types. 

See5 Cross-Validation Accuracy 

Table 14 and Table 15 show a comparison between the accuracy assessment using reference points and 
the See5 cross validation accuracy for the classifications performed in Fond du Lac Reservation. 

TABLE 14 – FOND DU LAC COMPARISON – SEE5 CROSS VALIDATION VS. ACCURACY ASSESSMENT 

 

 All Data No Leaf Off No Radar No Topo 

X-Val Assess X-Val Assess X-Val Assess X-Val Assess 

Wetland/Upland 96.1 79.0 95.8 77.4 95.6 77.9 92.3 71.3 

Cowardin Class 93.0 58.2 93.2 59.5 93.2 53.8 86.9 44.3 

Simplified Type 93.1 55.7 92.3 58.1 92.9 53.2 85.7 43.0 

 

TABLE 15 – FOND DU LAC COMPARISON – SEE5 CROSS 

VALIDATION VS. ACCURACY ASSESSMENT (CONT’D) 

 

 NAIP & LeafOff NAIP Only 

X-Val Assess X-Val Assess 

Wetland/Upland 84.0 50.3 76.4 41.5 

Cowardin Class 79.6 29.1 72.9 25.9 

Simplified Type 78.0 31.6 71.2 23.4 
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2.1.5. Decision Trees Discussion 

2.1.5.1. See5 Cross-Validation 

See5 cross-validation is a measure of accuracy done using training points as a part of the decision tree 
construction process. With the validation option enabled, See5 performs a user determined number of 
iterations of decision tree construction (i.e. folds) with a subset of the total training points and uses the 
remainder of the points for an accuracy assessment. In this study, a 10-fold cross validation was used.  In 
this scheme, 10% of the training points were randomly set aside and the decision tree was constructed 
using the other 90% of points. Repeat iterations were performed with a different subset of points set 
aside such that after 10 iterations each point has been used in accuracy assessment once. Accuracy is 
reported for each fold and totaled for an estimate of overall classification accuracy. 

The See5 cross-validation method is not a true assessment of accuracy because it uses training data 
employed in tree construction. However, it has been used as a preliminary surrogate for accuracy 
assessment when a formal independent accuracy assessment is yet to occur (Homer, 2007). In the 
Chanhassen study, cross-validation appeared to be a low estimate of accuracy for the wetland/upland 
classification and a high estimate for the simplified types when compared to the formal accuracy 
assessment. Table 9 and Table 10 compare the cross-validation accuracy with the formal accuracy 
assessment for each classification performed in Chanhassen. In the Fond du Lac study, cross validation 
appeared to be a high estimate for each classification. The reason for this is probably two-fold. First, the 
reference points used in the formal accuracy assessment are not a complete representation of the 
wetlands present, and accuracy within wetland types may be lower because of this. Second, training 
polygons were created in areas that were obvious representatives of target wetland classes. The training 
data used for cross-validation were spectrally similar and probably did not account for the diverse 
spectral difference inherent within wetland types. As a result, variation between natural wetlands may 
not have been adequately captured in the cross-validation accuracy. Table 14 and Table 15 show the 
comparison of cross-validation accuracy and formal accuracy assessment for classifications performed in 
Fond du Lac. 

While not a statistically sound assessment of accuracy, the cross-validation process takes seconds to 
complete and does appear to show general trends. There may not be a strong, consistent relationship 
between the cross validation accuracy and the formal accuracy assessment, but the trend of increased 
or decreased accuracy across classifications as determined by See5 through cross validation may be 
valuable information if interpreted appropriately.  

2.1.5.2. Comparison to Traditional Classifications 

The decision tree method consistently proved to be superior to traditional unsupervised and supervised 
classification of wetlands for both wetland/upland and Cowardin class classifications. Wetland/upland 
classification accuracy for the unsupervised, supervised, decision tree with only NAIP imagery, and 
decision tree with all data classifications are shown in Table 16, below. 

 

TABLE 16 – COMPARISON OF DECISION TREE AND TRADITIONAL CLASSIFICATION ACCURACY RESULTS 

 

 Chanhassen Fond du Lac 

Sup Unsup DT w/ 
NAIP 

DT w/ 
All Data 

Sup Unsup DT w/ 
NAIP 

DT w/ 
All Data 
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Wetland/Upland 53.3 52.5 78.3 93.1 74.4 80.5 76.4 79.0 

Cowardin Class 57.8 61.4 54.7 85.7 54.9 34.8 72.9 57.3 

 

 The unsupervised and supervised classification accuracies were lower than reported in the literature. 
Ozesmi and Bauer (2002) report studies with accuracies of approximately 70%-80%, but these studies 
were accomplished using more sophisticated classification techniques such as cluster busting and hybrid 
approaches. Traditional classifications were not the primary focus of this study and were meant for 
comparison purposes only. Accuracy results for decision tree classifications performed with only the 
NAIP imagery are also presented in Table 16, also for comparison purposes. It is evident that the 
decision tree method outperforms traditional classifiers, but the results of various decision tree 
scenarios show that the type and quality of data used to construct the tree have an effect on the quality 
of the decision tree classification. 

2.1.5.3. City of Chanhassen 

The City of Chanhassen offered the best opportunity for testing because of the city-wide wetland 
inventory. An unlimited amount of data was available for training and validation purposes within the 
area which allowed for a strong and diverse training data set and a robust accuracy assessment. 
However, Chanhassen contains little wetland variety. Most of the wet features in Chanhassen are water 
bodies and emergent wetlands. While few scrub shrub and forested wetlands did exist, the opportunity 
to train a decision tree to discriminate these wetland types was limited.  

Effects of Topography 

Resolution 

A LiDAR based DEM with a spatial resolution of 3m was used for topography and topographic 
derivations in the best classification scenario. However, LiDAR data is expensive to acquire and is not 
readily available for most areas. The U.S. Geological Survey (USGS) produces and continuously updates 
the NED, a seamless DEM for the United States that is public domain. The additional cost of using LiDAR 
data should be justified by directly correlating to higher classification accuracy. Table 17 compares the 
accuracy of classifications using high resolution LiDAR-based topography, NED topography, and no 
topography. 

TABLE 17 – ACCURACY RESULTS FOR VARYING TOPOGRAPHIC RESOLUTION 

 

 Hi-Res Topo Z NED Topo Z No Topo Z 

Wetland/Upland 93.1 3.8 91.6 6.8 88.7 10.5 

Cowardin Class 85.7 1.1 84.4 4.2 79.8 5.4 

Simplified Type 76.5 0.1 76.2 13.9 60.6 13.9 

Z-statistic values in bold show a significant difference (Z>2) between classifications to the left and 
right. Z value at the far right is for differences between Hi-Res Topo and No Topo. 
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As shown in Table 17, classification accuracy for wetland/upland decreases significantly between 
classifications using high resolution, NED topography, and no topography as input data. No significant 
difference between high resolution and NED topography existed for the Cowardin class and simplified 
type classifications, but decreases in accuracy were significant between the NED Topo classifications and 
the No Topo classifications. High resolution topography appears to be more useful in discriminating 
wetlands and uplands than it does in differentiating wetland types, however, a classification with no 
topography significantly decreases wetland type classification and should be avoided. As expected, a 
decrease in accuracy is evident as more classes are characterized. The decrease in accuracy seems to be 
consistent for each set of topography classifications.  

Significant differences are present between classification accuracies using NED and high resolution 
topography data, however, the benefits of the increased classification accuracy come at a substantial 
financial cost. The goals of future classification should be carefully considered to determine if the cost 
for acquiring high resolution data is worth the increase in classification accuracy. The freely available 
NED topography data allows for 91.6% accuracy in upland/wetland discrimination, a result that should 
not be ignored and one that could prove beneficial given the correct circumstances. 

Topography Derivations 

The CTI and surface curvature were both used as input datasets for the best classification. The 
calculation of the CTI is both labor and time intensive and, for high resolution topography data, requires 
considerable computer resources. The surface curvature derivation is a one step calculation that can be 
done relatively easily with standard software packages. The accuracy of classifications performed with 
each of these topographic derivations was compared in order to determine their impact on wetland 
classification (Table 18). 

TABLE 18 – ACCURACY RESULTS FOR VARYING TOPOGRAPHIC DERIVATIONS 

 

High Resolution LiDAR Topography 

 CTI & Curvature Z CTI Only Z Curvature Only Z 

Wetland/Upland 93.1 1.9 92.4 0.4 92.5 1.5 

Cowardin Class 85.7 1.5 84.1 0.1 84.2 1.4 

Simplified Type 76.5 1.2 75.1 0.5 75.7 0.6 

NED Topography 

Wetland/Upland 91.6 0.3 91.4 0.5 91.4 0.8 

Cowardin Class 84.4 0.4 84.8 0.8 84.0 0.4 

Simplified Type 76.2 0.4 76.6 0.3 76.2 0.04 

Z-statistic values in bold show a significant difference (Z>2) between classifications to the left and 
right. Z value at the far right is for differences between CTI & Curvature and Curvature Only. 

 

There was a slight decrease in accuracy between the classifications using high resolution CTI and surface 
curvature in conjunction and using each derivation individually, but this change was not significant (Z<2). 
This slight decrease was present only with derivations calculated from high resolution topography and 
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not with the NED data. No significant differences existed between wetland/upland, Cowardin class, or 
simplified types for any set of topographic derivation classifications. 

Due to the lack of significant changes between the methods of topographic derivation, it appears that 
the curvature is an acceptable alternative to the labor intensive CTI. This could represent a large time 
and cost saving opportunity in future classification methods development.  

2.1.5.4. Fond du Lac Reservation 

The Fond du Lac Reservation offered an opportunity to investigate the effects of various types of 
imagery on classification accuracy. Unfortunately, only a partial set of field verified reference points was 
collected. Optimally, these points would be well distributed, representative of all wetland types present, 
and numerous enough to be used for both decision tree construction and a formal accuracy assessment. 
The original intended use of the reference data involved only scrub shrub and forested wetlands so a 
high percentage of the points collected represented these types.  

Most of the wet features in the Fond du Lac Reservation are shrub and forested wetlands, but enough 
wetland diversity exists to train a decision tree classier for less dominant types given appropriate data. 
An additional field study in Fond du Lac will occur in summer 2010 to supplement the existing data and 
provide a complete reference data set.  These data will be used in future studies to provide more 
spectrally diverse training data and a more robust accuracy assessment.  

Effects of Imagery 

Radar Imagery 

Radar imagery was used in conjunction with other data sets in the best classification scenario. Radar 
data can be sensitive to soil moisture (Whitcomb et al., 2007; Henderson and Lewis, 2008) and may be a 
useful addition to wetland classifiers. However, radar data is expensive to acquire and is not readily 
available for use without appropriate licensing or ownership. The additional cost of using radar data 
should be justified by directly correlating to higher classification accuracy. Table 19 compares the 
accuracy of classifications with and without using radar data. 

TABLE 19 – ACCURACY RESULTS FOR EFFECTS OF RADAR IMAGERY 

 

 All Data Z No Radar 

Wetland/Upland 79.0 0.2 77.9 

Cowardin Class 58.2 0.6 53.8 

Simplified Type 55.7 0.3 53.2 

Z-statistic values in bold show a significant difference (Z>2) between 
classifications to the left and right. 

 

According to the accuracy assessment performed for this study, adding radar data to a wetland/upland, 
Cowardin class, or simplified wetland type classier does not have a significant effect on the accuracy of 
the resulting classification. Previous studies (Arzandeh and Wang, 2003; Costa, 2004) prove the benefit 
of radar data in wetland classification. These results are believed to be biased and not valid because of 
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poor quality of the reference data set. The classification and accuracy assessment will be revisited when 
a robust reference data set is collected. 

Spring Imagery 

Leaf-off imagery was used in conjunction with other data sets in the best classification scenario. Leaf-off 
imagery, when used in addition to summer leaf-on data, provides multi-temporal data that show 
vegetative characteristics throughout the growing season.  Aerial imagery is not typically flown in the 
spring prior to leaf out, so additional aerial photography must be completed to acquire such data. Table 
20, below, compares the accuracy of classifications with and without spring leaf-off imagery. 

TABLE 20 – ACCURACY RESULTS FOR EFFECTS OF LEAF-OFF IMAGERY 

 

 All Data Z No Leaf-off 

Wetland/Upland 79.0 0.6 77.4 

Cowardin Class 58.2 0.2 59.5 

Simplified Type 55.7 0.4 57.6 

Z-statistic values in bold show a significant difference (Z>2) between 
classifications to the left and right. 

 

According to the accuracy assessment performed for this study, adding leaf-off imagery to a 
wetland/upland, Cowardin class, or simplified wetland type classier does not have a significant effect on 
the accuracy of the resulting classification. Many studies (Ozesmi and Bauer, 2002; Lunetta and Balogh, 
1999) document the increased accuracy, especially in forested areas, of adding multi-temporal imagery 
to a wetland classification. Because of poor quality of the reference data set, these results are believed 
to be biased and not valid. The classification and accuracy assessment will be revisited when a robust 
reference data set is collected. 

2.1.6. Decision Trees Conclusions 

The results presented in this research prove that decision tree classifiers outperform traditional 
classification methods when discriminating wetlands from uplands and when classifying wetland types. 
The See5 software package used in conjunction with the NLCD Mapping Tool performed above 
expectations in the streamlined ease and efficiency of use. The cross-validation tool in See5 was a 
valuable, albeit not statistically sound, surrogate for a formal accuracy assessment and may be used to 
quickly compare results in a qualitative manner. Achieving high accuracy when performing automated 
classification of wetland types, while using limited data, is a positive outcome. With the addition of 
other relevant data into the decision tree classifier, the potential for increases in wetland classification 
accuracy beyond those presented herein certainly exists. 

Several conclusions can also be made regarding the usefulness of topography data in decision tree 
development. Topography data is an essential element in decision tree construction, but high resolution 
topography data may not guarantee higher classification accuracy. In this study, the use of high 
resolution topography yielded a significant increase in classification accuracy compared to the NED 
topography only for the wetland/upland determination.  Topographic derivatives are also a necessary 
input data source, but the use of the CTI as an input dataset did not outperform the simply calculated 
curvature model.  The goals of future research projects should be carefully considered when choosing 
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input types and quality of input data. High resolution topography data and complex topographic 
derivative calculations may not be necessary in order to achieve adequate wetland classification 
accuracy. 

While there were several informative outcomes from this study in the Chanhassen study area, the 
results of classifications from the Fond du Lac study area conflict with several literature sources which 
indicates a flawed methodology.  The primary flaw in the Fond du Lac portion of the study involves 
inadequate reference data, and is discussed further below. 

2.1.7. Decision Trees Future Directions 

The results of this study highlighted several items that should be revisited in the future. First and 
foremost, adequate reference data must be collected for the Fond du Lac study area. Unfortunately, the 
reference data set for the Fond du Lac area available at the time of this study did not include a large 
enough sample size. In addition, the reference samples that were available were not distributed evenly 
across wetland types. A field data collection will occur during the summer of 2010 in an effort to obtain 
a more robust reference data set for the Fond du Lac Reservation. With a larger reference data set it is 
hoped that more samples of each wetland class will allow for greater differentiation of classes during 
classification, higher spectral variability within classes will be represented in the decision tree model, 
and a large enough sample size will remain available for an unbiased accuracy assessment. 

Additional work can also be done with radar data. Only radar reflectivity values were used in decision 
tree construction for this study. Unfortunately, due to the inadequate Fond du Lac reference data, radar 
reflectivity data were unable to be assessed for its effects on wetland classification accuracy in this 
study. A variety of other radar products in addition to reflectivity values may also be derived, particularly 
those utilizing the imaginary backscatter mechanism data unique to radar. Further exploration of these 
complex radar derivatives may prove beneficial to future wetland classification efforts. 

2.2. Wetland Mapping using Radar Image data 

2.2.1. Radar Mapping Introduction 

Most of the focus of remote sensing of wetlands has been put on sensors operating in the optical and 
infrared range of the electromagnetic spectrum, the limitations of which have been noted (Ozesmi and 
Bauer, 2002). Unlike optical sensors, radar sensors are unique in that they operate in the microwave 
portion of the electromagnetic spectrum and are insensitive to atmospheric conditions (e.g. cloud cover) 
and low light conditions and can therefore offer more consistent multi-temporal images. radar 
backscatter is sensitive to soil and vegetation moisture properties and can, to some degree, penetrate 
the forest canopy and provide sub-canopy vegetation and soil saturation information (Whitcomb et al., 
2007; Henderson and Lewis, 2008). Because radar is sensitive to moisture, techniques using inferometric 
analysis of radar data can identify changes in water levels down to the centimeter (Wdowinski, 2007).  

Radar antennas can transmit radar waves of varying wavelengths. Common radar bands are C-band, L-
band, and P-band, in order of increasing wavelength. Longer wavelengths tend to penetrate much 
farther into the forest canopy, thus providing a backscatter signal that conveys information about sub-
canopy vegetation and moisture conditions (Whitcomb et al., 2007). Woody wetlands have high 
backscatter and appear white, and are often confused with urban areas, while herbaceous wetlands 
have less backscatter and appear darker (Wdowinski, 2007). Wang (1995) used C-band, L-band, and P-
band radar and found that high leaf area indices had an effect on C-band radar only, not L-band or P-
band. Thus, L-band radar is significantly better at detecting flooded forests with intact canopy cover 
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than C-band (Kasischke, 1997; Rosenqvist et al., 2004; Hess et al., 2003). Conversely, C-band radar is 
better at identifying herbaceous wetlands (Henderson and Lewis, 2008). 

Radar waves can be sent and received at similar or dissimilar polarizations. Similar polarizations (HH, VV) 
are reported as useful in discriminating forested wetland/non-wetland by providing better image 
contrast than cross-polarization (HV), whereas cross-polarization was preferable when distinguishing 
between forested swamps and herbaceous marshes (Hess et al., 1990; Hess et al., 1995).  

Multiple studies report that a combination of C-band and L-band radar, as well as mixed polarizations, 
significantly increased accuracy of wetland/non-wetland discrimination and wetland vegetation 
classification (Hess et al., 1990; Hess et al., 1995; Dobson, 1995; Whitcomb et al., 2007; Henderson and 
Lewis, 2008). Henderson and Lewis (2008) wrote that cross-polarized imagery can be as valuable as 
single-polarized, multitemporal imagery. Studies also found that vegetation information is enhanced by 
using multitemporal and cross-polarized imagery and reported land cover accuracies above 90% when 
using SAR imagery (Kasischke, 1997; Dobson, 1995). Lozano-Garcia and Hoffer (1993) reported increased 
accuracy in land cover classification when they combined SIR-B data with Landsat TM data. 

Whitcomb et al. (2007) used JERS to collect two seasons of L-band SAR imagery to produce a wetland 
map throughout the state of Alaska. Ancillary data sets including DEM (66m spatial resolution), map of 
open water, and latitude were included in the classification model. The Random Forests decision tree 
algorithm (Breiman, 2001) was used as a classifier. Nine wetland classes were aggregated which roughly 
correlated to the Circular 39 (FWS citation here) wetland classifications. They reported accuracies 
ranging from 69.5% to 95%, depending on wetland class, with an overall accuracy of 89.5%. The NWI 
map for Alaska was used as test data set in the accuracy assessment. The authors suggest L-band in 
combination with C-band SAR will better distinguish between emergent wetland types (Whitcomb et al. 
2007).  

Henderson and Lewis (2008) provide the most recent review of usage of radar data to detect and classify 
wetlands. They reported that distinguishing wetlands and non-wetlands is consistently done with higher 
accuracy than discriminating wetland vegetative species. However, they noted that when mapping 
wetland species, most of the confusion is between wetland types and not between wetland and non-
wetland vegetation. (Henderson and Lewis, 2008).    

2.2.2. Radar Mapping Methods 

This preliminary study examines the usefulness of radar-derived products for wetland mapping using 
decision trees.  The radar data used consists of two RADARSAT-2 fine mode (10 m spatial resolution), 
quad polarized (HH, HV, VV, VH) images acquired on June 15 and September 19, 2009.  The data were 
processed to represent constant beta intensity in decibels.  Three polarimetric decompositions were 
then applied to both images.  These decompositions were “van Zyl” (vZ), “Freeman-Durden” (F-D), and 
“Cloude-Pottier” (C-P).  The vZ decomposition estimates three parameters of a radar image: odd 
bounce, even bounce, and diffuse scattering.  vZ works on the theory that scattering objects on the 
ground create a number of bounces or reflections that then create recognizable phase differences 
between the HH and VV channels.  The F-D decomposition estimates three paramaters: surface/single 
bounce, double bounce, and volume scattering.  F-D is based on a physical model that separates the 
scattering mechanisms of the target and computes a percentage of each type of scatterer in each pixel.  
The C-P decomposition computes entropy, alpha angle, and anisotropy from the eigenvalues and 
eigenvectors of the image’s correlation matrix.  Entropy is the randomness of scattering (low values 
indicate a single scattering mechanism and high values indicate a random mixture).  Alpha angle is 
indicative of the average or dominant scattering mechanism (low angles indicate surface scattering, mid-
angles indicate dipole scattering, and high values indicate multiple scattering).  Anisotropy indicates 
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multiple scatterers.  The three decompositions were combined with additional data in a decision tree 
classification algorithm (described below). 

Additional geospatial data used included color infra-red (CIR) aerial images of leaf-on (summer 2008) 
and leaf-off (spring 2009) conditions and a USGS National Elevation Data (NED) 10 m Digital Elevation 
Model (DEM), from which elevation and slope were derived and used as inputs to the classifier.   

A decision tree classifier is a rule-based algorithm that uses training data.  The algorithm is designed to 
reduce intra- and inter-class variability through binary splitting of training values.  The result of this 
splitting is a branching dichotomous key in which the various decision points are based on the variables 
that are found to be most significant in explaining the variation in the training data.  The trained 
decision tree is then applied to a data set to classify it into the applicable categories. The decision tree 
classifier used in this project was the Random Forest algorithm (described alternately as Random 
Forests).  Random Forest (RF) generates an ensemble of decision trees that use different combinations 
of the training data.  Each tree is given a “vote” as to which best discriminates the desired classes.   The 
RF algorithm then chooses the tree with the most votes – i.e. the best performance in using the training 
data to classify the same training data.  RF uses “out of bag” (OOB) sampling of roughly 1/3 of the input 
data to compute an unbiased estimate of the error in the classification trees and to estimate the 
importance of the input variables.  The outputs of the algorithm are the best performing decision tree, 
the Gini Index of the importance of each input variable, the cross validation accuracy of the classifier 
derived from OOB sampling, a classification map of all pixels in the input layer, and a confidence map 
showing the relative classification confidence for each image pixel.  The input data were 158 Fond du Lac 
field verified wetland type points described above.  The classes of interest were Open Water, Emergent 
Wetland, Forested Wetland, Scrub Wetland, and Upland.  The study area was the Fond du Lac portion of 
Carlton County described above. 

2.2.3. Radar Mapping Results 

The three decomposition layers are shown in Figures 7, 8, and 9.  The vZ decomposition, with its 
dependence on bounce type and diffuse scattering, appears to perform reasonably well in discriminating 
open water from forested areas.  It also is highly sensitive to water level, as shown in the difference in 
the value of the decomposition between the June and September dates.  The F-D decomposition (Figure 
8) is similar to the vZ decomposition in that it is highly dependent on bounce type; however F-D 
emphasizes the number of bounces rather than whether that number is odd or even.  It also uses the 
volume scattering parameter rather than diffuse scattering, which increases its water and vegetation 
type discrimination potential. In this study F-D was able to discriminate forest versus scrub vegetation 
and areas where vegetation bordered water due to the strong double bounce effect at water-vegetation 
boundaries.  The C-P decomposition (Figure 9) is the most difficult of the three to interpret visually.  
There layers of the decomposition represent the various combinations of entropy, scattering, and 
anisotropy, as summarized in Table 21.  In general, the C-P decomposition was not effective in 
discriminating vegetation type or water-land boundaries.  Most of the variability in C-P values was found 
within open water areas, making it less than suitable for wetland type mapping.   
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Figure 7.  The van Zyl (vZ) decomposition layer with seasonally contemporaneous aerial images for comparison. 

 

 

 

Figure 8. The Freeman-Durden (F-D) decomposition layer with field photos for comparison. 
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Figure 10. The Cloude-Pottier (C-P) decomposition layer.  The class numbers represent the various combinations of 
entropy, scattering, and anisotropy, as summarized in Table 21. 

 

 

Table 21. List of C-P decomposition layers 

Classes 0–7 have low anisotrophy, 8–15 have high anisotropy 
0 & 8: High entropy double bounce scattering 
1 & 9: High entropy multiple scattering 
2 & 10: Medium entropy multiple scattering  
3 & 11: Medium entropy dipole scattering  
4 & 12: Medium entropy surface scattering 
5 & 13: Low entropy multiple scattering 
6 & 14: Low entropy dipole scattering 
7 & 15: Low entropy surface scattering 
Class 16 is high entropy surface scattering, which is  
considered not a feasible region in entropy/alpha space  

 

Figures 11, 12, and 13 give the results of the RF decision tree classification.  Figure 11 shows the Gini 
Index values for the input data sets.  Higher values of the Gini Index mean that the data set was more 
useful in discriminating the classes of interest.  Interestingly, the most useful variables were the raw 
image bands themselves – particularly the infra-red leaf-on and leaf-off aerial image bands and the raw 
quad polarization radar bands.  Closely following in Gini values were the terrain-derived variables of 
slope and elevation.  The radar decomposition values were not highly useful in the decision tree.  We 
attribute this result partially to the timing of the radar data collects (we did not capture a transition 
from wet to dry) and partially to the composition of the field data (most of the points were in forested 
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wetlands).  Figure 12 shows the current, outdated NWI along with a recent aerial photo.  In this case, 
the NWI layer appears to reasonably accurately identify the wetlands in the frame.  Figure 13 shows the 
same NWI layer along with the output of the RF classifer.  The broad wetland patterns match well with 
the NWI.  The RF does persistently underestimate the amount of upland in the frame.  We attribute this 
again to the training data.  Since few of the 158 training points fell in upland areas – and very few in 
what would be termed urban areas – the classifier likely could not adequately discriminate those areas.  
The overall computed RF cross-validation accuracy resulting from the OOB sampling was 74.5%, which 
we suggest is reasonable for a limited training set. Several hundred new points collected during the 
2010 field season are expected to remedy these training data related problems.   

 

 

 

Figure 11.  The Gini index for each variable in the decision tree classifier.  Higher values indicate that the variable 
had a greater value in correct determination of wetland areas. 
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Figure 12. The current NWI layer as compared with a recent aerial image. 

 

 

 

 

Figure 13. The current NWI (right) as compared with the output of the decision tree classifier. 
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2.2.4. Radar Mapping Conclusions 

In this study decompositions derived from radar data did not significantly impact classification results.  
However, while products derived from radar were not deemed useful, the raw quad polarized radar 
bands were significant variables.  The June 2009 HV polarization was the second most useful input 
variable as measured by the Gini Index.  We are continuing to work with radar data.  We expect that 
improved field data will make the limited conclusions we’ve drawn from this study more comprehensive 
and robust.   

2.3. The Importance of Leaf-off Imagery 

The results of this study indicate that leaf-off images are very important for accurate wetland mapping.  
In both See5 and RF decision tree studies, the spring leaf-off image bands were significant contributors 
to the overall accuracy of the results.  In the See5 study the accuracy of the output maps decreased 
when leaf-off images were removed from consideration.  In the RF study, the leaf-off infra-red band was 
the third most significant variable.  Therefore, for the creation of the ancillary data layers we 
recommend that the wetland mapping workers use to assist in their efforts (e.g. the “likely wetland” 
layers), leaf-off images are vital.   

In addition, the temporal difference in ground conditions between the spring leaf-off and summer leaf-
on images is significant.  In forested areas, the tree canopy matures quickly in the spring and will 
obscure wetland features.  In regions dominated by agriculture wet soil conditions will not be captured 
by summer imagery because of both the common drying of soil from spring through summer and the 
growth of crop canopies, which obscure remaining wet features.  Therefore we strongly recommend 
that leaf-off images be collected statewide for use in the MN NWI update. 

3. Recommendations and Protocol for Wetland Mapping in the Arrowhead 

3.1.  General Recommendations 
 
The results presented above suggest that an ideal geospatial dataset for wetland mapping, whether for 
automated analysis or interpretation by analysts, would include recent high resolution color infra-red 
images in both leaf-on and leaf-off conditions, high resolution LIDAR data providing both a bare earth 
DEM and vegetation height information, RADAR image data for several dates in spring and summer, and 
comprehensive soil type data for the study area.  The limited geospatial data available for the 
Arrowhead is not sufficient to create such an idea dataset.  Thus, a wetland mapping approach for the 
Arrowhead must identify the most useful of the available data types and analysis approaches.   The 
following are general recommendations for conducting an NWI update in the Arrowhead: 
 

 Base image data for interpretation: 2009 leaf-off 1 meter color infra-red imagery.   

 Ancillary image data: 2008/2009 NAIP.  NAIP imagery was collected in Minnesota in 2009 but it 
does not have a color infra-red band.  An important characteristic of infra-red images is that 
water and saturated areas appear significantly darker than non-wet areas because of the 
absorption of infra-red wavelengths by water.  Thus, while the 2009 NAIP images are newer and 
will provide a more recent wetland map, the spectral information present in the 2008 images is 
likely to be more advantageous in both manual interpretation and image segmentation. The 
new NAIP could be viewed side-by-side with the 2008 and leaf-off images, providing improved 
spectral and temporal information. 
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 Elevation data: LIDAR DEMs where available (soon to be statewide), National Elevation Data in 
LIDAR coverage gaps.  Elevation data are critical for identifying depressional areas that may not 
be readily visible on optical imagery.   

 Soils data: NRCS SSURGO layers.  The SSURGO database, while limited in availability in the 
Arrowhead (notably absent in St. Louis County), and at relatively coarse spatial resolution, 
provides useful information about the general soil characteristics of an area.  Parameters drawn 
from the database, such as hydric and poorly-drained designations and soil acidity data, can be 
used to distinguish some commonly confused wetland types – particularly in the Eggers and 
Reed classification system. 

 Image preprocessing:  The base image data should be segmented using an object oriented 
algorithm prior to interpretation.  While very time consuming initially, creating image segments 
will substantially reduce manual interpretation time and subjectivity in drawing wetland polygon 
boundaries. 

 Classification system: The Cowardin classification system should be the main wetland typing 
method used; however, the Eggers and Reed type for each wetland should be identified during 
the interpretation process.  Increasing nationwide adoption of the Eggers and Reed indicates 
that failing to collect such data would be a substantial oversight – particularly given the difficulty 
of developing a robust crosswalk between Cowardin and Eggers and Reed. 

 

3.2. Mapping Protocol 
 
The following is a set of detailed guidelines and protocol steps for mapping wetlands in the Arrowhead.  
The project steps are presented in order: data acquisition, pre-interpretation data processing, data 
display and interpretation, post processing, delivery, and quality control. 

3.2.1 Data Types and Software 
 
The following data types should be acquired for use in this project: 

 2009 Spring leaf-off images for the study area 

 2008 National Agriculture Imaging Program (NAIP) images for the study area 

 2009 National Agriculture Imaging Program (NAIP) images for the study area 

 USDA NRCS Soil Survey Geographic (SSURGO) soils data 

 High resolution LiDAR DEMs where available 

 National Elevation Data at 10 meter spatial resolution 

 MN DNR hydrology dataset (rivers, lakes, etc.) 

 USGS quarter quadrangle tile index from MN DNR 

 Minnesota ecoregions layer from MN DNR 
 
Software: 

 ESRI ArcGIS 

 Definiens Server 7 (or later) 

 Python GDAL library 

 TauDEM hydrology extension for ArcGIS 

 The R statistical package with decision tree module (Random Forest) 
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3.2.2 Preprocessing 
 Prepare the 2009 leaf-off images (all four bands) for image segmentation by subsetting them 

into quarter quadrangle tiles using the tile index.  This can be automated using Python and the 
GDAL library. 

 Use the batch feature in Definiens to automate segmentation of the NAIP tiles using the 
following parameters: 

o Color/shape: 0.5 each 
o Scale 50-70 (lower for smaller wetlands) 

 Generalize segment boundaries by a reasonable amount to reduce the number of vertices.  This 
will make subsequent editing of segment boundaries much easier and will not significantly affect 
the segments shapes. 

 Export segments from Definiens as ArcGIS Shapefiles.  Ensure they are exported with 
projection/coordinate information. 

 Create a Normalized Difference Vegetation Index layer from the NAIP infra-red and red bands 

 Threshold the NDVI layer to include only pixels with values greater than 0.2 

 Use the LiDAR or NED elevation layers to create a Compound Topographic Index layer using the 
d-infinity water flow algorithm in TauDEM 

 Compute a “likely wetland” map by using the data types described above as inputs to the 
Random Forest decision tree algorithm in combination with valid training data (either collected 
by the mapping contractor or provided by DNR or others).  The output of the RF algorithm will 
be a layer showing the wetland presence/absence as well as type attributes for the study area, 
along with a confidence map depicting the statistical certainty of the classification result for 
each pixel. 

3.2.3 Data display and Interpretation 
 We recommend against viewing the old NWI polygons at any point in this procedure so as not to 

bias the results. The old NWI could perhaps be used after the initial interpretation as a 
comparison. 

 A dual monitor setup is recommended if possible. 

 Display in ArcGIS or other appropriate software the leaf-off tile of interest, the wetland 
likelihood map, a topography layer (LiDAR, NED), and the image segments.  

 Display leaf-off images and segments for each adjacent image tile so that local context can be 
used to inform the interpretation process at the edges of the tile of interest. 

 For each segment: 
o Determine whether it is wetland or upland using the interpreter’s best professional 

judgment.   
o If the segment is wetland, record the Cowardin and Eggers & Reed (E&R) types in the 

ArcGIS table associated with the segment layer.  We recommend this be done using a 
constrained attribute domain to minimize data entry errors. 

o Edit the boundaries of the segment using the ArcGIS feature editing tools so that the 
boundaries correspond to the natural wetland edges. 

3.2.4 Data Post-processing  and Delivery 
 Dissolve (merge) adjacent segments that have the same wetland type.  This operation should 

not be done if the E&R types are different. 

 Delete upland segments from the segment layer. 
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 Deliver final segment layer as NWI wetland map.  The map should be delivered at a scale desired 
by MN DNR, either at the quarter quad, full quad, or county, and in a GIS format such 
asgeodatabase.   

 The product should be fully compliant with all USFWS requirements so that it is ready for upload 
to the main NWI. 

3.2.5 Quality Assurance / Quality Control 
 The mapping contractor should perform comprehensive in-house validation of the data 

products both during and subsequent to interpretation work. These should include positional 
and thematic accuracy assessments.   

 If a free text data entry approach is used (e.g. the interpreters type in rather than select 
Cowardin codes for wetland segments), attribute validity checks should be used to ensure 
consistency. 

4. Conclusions 
 
The research presented in this document is an in-depth analysis of selected wetland mapping 
techniques for the Arrowhead.  While some work remains to be completed, such as the wetland typing 
using radar images approach, the results are sufficient to draw conclusions and to make 
recommendations for the optimal approach to accomplishing the objectives of the Minnesota NWI 
update.  The protocol provided above is expected to be suitable for meeting or exceeding the FGDC 
wetland mapping standard and thus allowing for the inclusion of Minnesota’s updated wetland maps in 
the USFWS National Wetland Inventory. 
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