South-Central Minnesota

Groundwater Monitoring of the
Mt. Simon Aquifer

James A. Berg and Scott R. Pearson
Minnesota Department of Natural Resources
Ecological and Water Resources Division

St. Paul, Minnesota

Ecosystems
Land Use
Surface Water
Soil
Groundwater

5 g

minnesota ENVIRONMENT
Department of Natural Resources

AND NATURAL RESOURCES

TRUST FUND June 2011




Funding for this project was provided by the Minnesota Environment and Natural Resources
Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources
(LCCMR).

This is the final report of the LCCMR project “South-Central Groundwater Monitoring and
County Geologic Atlases” (M.L. 2008 Chap. 367, Sec. 2 Subd. 4 (h)).

Authors
James A. Berg
Scott R. Pearson

Contributors and Reviewers
Jennie Leete

Neil Cunningham

Bob Tipping

Tony Runkel

John Mossler

Version 1.3, June 2011

If you have questions or would like additional information, please contact James Berg at
651-259-5680.

Minnesota Department of Natural Resources
500 Layfayette Road North | Saint Paul, MN 55155-4040 | www.dnr.state.mn.us | 651-296-6157

Toll free 888-MINNDNR | TTY 651-296-5484

This report is available in additional formats upon request, and online at www.dnr.state.mn.us



Contents

LY o 5] 1 = o] SO PP PP PP OPPPPTPP 6
INtrOdUCTION AN PUIPOSE. ... e aaraees 7
Geology of South-Central MiNNESOta........cccooiiiiiiii i, 8
INVeSstigatioN METNOAS ... 9

Site selection

Drilling methods and well construction
Aquifer interval selection for monitoring
Geophysical well logging

Well development

Groundwater sample collection

Specific capacity procedures and results
Continuous water level measurements

Thickness of the Mt. Simon Aquifer Near the Western SUDCIrop......ccccviviiiiiiiiiiiiiieeaes 13
Groundwater Movement and Potentiometric Surface - Mt. Simon Aquifer........ccoccvviiviviiiiiiiiniinnnn, 13
GEOCNEMISIIY oo, 14

Groundwater Residence Time

Stable isotopes, *O and deuterium
Source water temperature and mixing
Evaporation of source water

Major ions

Trace elements

Hydrogeology lllustrated by Cross Sections and Hydrographs from Observation Well Nests....... 18
Cross section A-A’ and Severence Lake WMA hydrograph
Cross section B-B’ and Sibley County landfill property hydrograph
Cross section C-C’ and Norwegian Grove WMA hydrograph
Cross section D-D’ and Peterson unit hydrograph
Cross section E-E’ and Courtland West/Nicollet Bay hydrographs
Cross section F-F’ and Helget-Braulick WMA hydrograph
Cross section G-G’ and Bergdahl WMA hydrograph
Cross section H-H' and Case WMA hydrograph
Cross section I-I' and Madelia WMA hydrograph
Cross section J-J ‘and Long Lake WA hydrograph
Cross section K-K' and Exceder WMA hydrograph
Cross section L-L' and Rooney Run WMA hydrograph

Paleohydrology and recharge @Stimates.........coooooiiiiiiii i, 22
Southern area recharge
Northern area recharge



2009 Groundwater APProPriatiON......cccii i e e e e e e e e e e e e e e e e e e eeeeanannnn 23
Southern area appropriation
Northern area appropriation

(©fe] A 1o1 [VE-1 10 ] 4 1T T T r TR 24
R BT O BN C S e 25
Attachments Section

L= Lo PP PP PR PPPPPP 28
1: Well summary
2: Specific capacity and water level data summary
3: Field sample collection and handling
4: Residence time indicators, stable isotopes, and selected trace elements
5: Selected anion and cation data

1: Mt. Simon observation well nest locations

2: Cambrian and older stratigraphy in study area

3: County and state Paleozoic bedrock map

4: Mt. Simon Sandstone thickness

5: Mt. Simon potentiometric surface and groundwater flow directions

6: Cross section Z-Z', Mt. Simon potentiometric surface

7: Carbon-14 residence time data from the shallower aquifers at each observation well
nest

8: Mt. Simon carbon-14 residence time, potentiometric surface, and groundwater flow
directions

9: Stable isotope data compared with North American meteoric line

10: Ternary diagram-relative abundances of major cations and anions

11: Mt. Simon sulfate concentrations (mg/l), and groundwater flow directions

12: Mt. Simon chloride concentrations (mg/l), and groundwater flow directions

13: Mt. Simon arsenic concentrations (mg/l), and groundwater flow directions

14: Precipitation departure from normal October 2009-September 2010

15a: Cross section A-A

15b: Severance Lake WMA hydrograph

16a: Cross section B-B’

16b: Sibley County landfill hydrograph

17a: Cross section C-C’

17b: Norwegian Grove WMA hydrograph

18a: Cross section D-D’

18b: Peterson Unit hydrograph

19a: Cross section E-E’

19b: Courtland West Unit hydrograph

19c: Nicollet Bay Unit hydrograph

20a: Cross section F-F’

4 South-Central Minnesota Groundwater Monitoring of the Mt. Simon Aquifer



20b: Helget Braulick WMA hydrograph

21a: Cross section G-G’

21b: Bergdahl WMA hydrograph

22a: Cross section H-H’

22b: Case WMA hydrograph

23a: Cross section I-I’

23b: Madelia WMA hydrograph

24a: Cross section J-J’

24b: Long Lake WA hydrograph

25a: Cross section K-K’

25b: Exceder WMA hydrograph

26a: Cross section L-L

26b: Rooney Run WMA hydrograph

27: Mt. Simon recharge interpretation

28: Generalized cross section Z-Z’ and geochemical data
29: Cross section Z-Z', Mt. Simon recharge and discharge
30: Mt. Simon observation well nest locations and 2009 groundwater appropriation

Appendix A: Geological/Geophysical Logs and Well Construction Diagrams.................

South-Central Minnesota Groundwater Monitoring of the Mt. Simon Aquifer

5



Abstract

The deepest bedrock aquifer of south central/southeastern Minnesota, including the Minneapolis/St.
Paul metro area, is the thick (50 to 200 feet) Cambrian sandstone Mt. Simon aquifer. It supplies all or
some of the water used by over one million Minnesotans. The few water level measurements available
from this aquifer in the Mankato and Minneapolis/St. Paul metro area indicate declining water levels
in areas where water is being withdrawn for municipal and industrial use. To better understand the
recharge dynamics of the Mt. Simon aquifer the western and northern edge of the Mt. Simon aquifer
was investigated and characterized through observation well installations, water level monitoring,
groundwater chemical analysis, and aquifer capacity testing. Most data collected for this study are
derived from the wells installed at 14 locations by contracted drilling companies.

The combination of chemical residence time indictors, continuous water level data from nested well
locations, and a general knowledge of the regional hydrostratigraphy, show an aquifer with a very slow
recharge rate from a large source area located south of the Minnesota River and a smaller source area
located in the northern portion of the study area. The younger “C residence time values of Mt. Simon
groundwater (7,000-8,000 years) from this project roughly correspond to a time after the last ice sheet
had receded from southern Minnesota suggesting groundwater in the Mt. Simon aquifer in this region
began as precipitation that inf Itrated during the post-glacial period. The stable isotope data of oxygen
and hydrogen support this conclusion. A recharge estimate of the Mt. Simon aquifer south of the Min-
nesota River based on these minimum residence time data suggest an inf ltration rate of approximately
2 cm/year. The resulting 5 billion gallons/year of recharge from the southern source area is less than
the amount of groundwater used from the most recent year for which data are available (2009) but ap-
proximately equal to permitted volumes (i.e., the volume of water that the users are allowed to pump)
for appropriators in this area. At current groundwater extraction rates, the region’s groundwater supply
appears to be in a steady state. The effect of future increases in groundwater appropriation from the Mt.
Simon due to population growth, industrial development, or drought might push this resource beyond
this steady state.

A major accomplishment of this project is the creation of a network of observation well nests along the
western margin of this aquifer system. Long term water level data and geochemistry from these wells
will enable future hydrologists to evaluate the local and regional effects of any future expansion of Mt.

Simon groundwater pumping in the region beyond current volumes.
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Introduction and Purpose

The 2008 and 2009 legislatures allocated funding from the Environment and Natural Resources Trust Fund
for an aquifer investigation, mapping, and monitoring project in south-central and east-central Minnesota
(Figure 1). The 2008/2009 allocations provide $4,295,000 for a 4-year project. The allocation is being
shared by the DNR ($2,769,000) and the Minnesota Geological Survey (MGS, $1,526,000) to evaluate the
Mt. Simon aquifer and produce geologic atlases. The purpose of this report is to compile, summarize, and
interpret data collected from the frst phase of the DNR portion of this project as required by the statute (ML
2008, Chap. 367, Sec. 2, Subd. 4 (h)). A report summarizing the second phase of the project west and north-
west of the Twin Cities Metropolitan area is scheduled for completion June 30, 2012.

The deepest bedrock aquifer of south central/southeastern Minnesota, including the Minneapolis/St. Paul
metro area, is the thick (50 to 200 feet) Cambrian sandstone Mt. Simon aquifer. and it supplies all or some
of the water used by over one million Minnesotans. The few water level measurements available from this
aquifer in the Mankato and Minneapolis/St. Paul metro area indicate declining water levels in some parts
of these areas where water is being withdrawn for municipal and commercial use. While efforts currently
are underway through other agency and additional Minnesota Department of Natural Resources projects to
locally map and understand these depressed Mt. Simon water level areas, we believed a project to regionally
understand the recharge dynamics of the Mt. Simon aquifer was needed. The western and northern edge of
the Mt. Simon aquifer (Figure 1), where it is not overlain by relatively impermeable Paleozoic shale forma-
tions, was considered the most likely area for aquifer recharge. This edge of the Mt. Simon aquifer also was
investigated and characterized through observation well installations, water level monitoring, groundwater
chemical analysis, and aquifer capacity testing to help determine recharge pathways and sustainable limits
for this aquifer. These data will help determine aquifer recharge characteristics and potential limitations for
future use.

Most data collected for this study are derived from the wells installed at 14 locations by contracted drill-
ing companies. Staff from the DNR Ecological and Water Resource Division coordinated the installation of
these wells, which are known among groundwater professionals also as observation wells. Drilling in the
northern portion of the investigation area (Phase 2) began in the fall of 2009 to complete well nests (two or
more observation wells completed at the same location but at different depths) at an additional 10 locations.
The wells are completed in the Mt. Simon aquifer and shallower aquifers on public property in the project
area to depths of 70 feet to 680 feet (Table 1). The wells were sampled for chemical constituents such as
trittum and carbon-14 that will help determine the residence time or age of the groundwater in this aquifer
and overlying aquifers. The wells were also instrumented with equipment to continuously record groundwa-
ter levels.
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Geology of South-Central Minnesota

The focus of this investigation was the Cambrian Mt. Simon Sandstone (Figure 2) which is located

at the base of a thick sequence of marine Paleozoic carbonate, shale, and sandstone formations that
underlie central and southeastern Minnesota in a broad structural basin known as the Hollandale
embayment (Figure 3). The Mt. Simon Sandstone is generally a medium to coarse-grained quartzose
sandstone (Mossler, 2008). The Mt. Simon formation cuttings observed from drill holes for this proj-
ect generally indicated the unit is dominated by thick beds of gray, white silty, very fne to medium-
grained quartzose to feldspathic sandstones with thin white-grey and light green shale beds. The basal
portion of the Mt. Simon Sandstone has somewhat thicker shale beds and coarse yellowish quartz
grains ranging from very coarse sand to medium pebble size.

Various Precambrian rocks underlie the Mt. Simon Sandstone due to a complicated geologic history
prior to the deposition of the Paleozoic rocks. These older underlying rocks include Middle Proterozo-
ic sedimentary rocks, such as the Hinckley Sandstone and the Fond du Lac, Early Proterozoic igneous
and metamorphic rocks, and in some southern areas, the Lower Proterozoic Sioux Quartzite. None of
these underlying rocks have desirable aquifer properties for most purposes. Therefore, the Mt. Simon
Sandstone is the deepest bedrock aquifer in the region. Furthermore, along the western edge of the
Hollandale embayment (Figure 3), the Mt. Simon is commonly the only aquifer available for large
capacity (i.e., municipal and industrial) use.

Following the deposition of sand and other sediments that would become the Mt. Simon Sandstone
and overlying formations, there was a long period of exposure and non-deposition of rock materi-

als. During the Late Cretaceous period marine and non-marine sedimentary rocks (mostly shale and
sandstone) were deposited along the western edge of the Hollandale embayment in south-central Min-
nesota. During this period a shallow epicontinental (inland) sea covered the western interior of North
America. Relatively thick sections of these types are rocks are common in the southern portion of the
investigation area.

Following another long period of exposure and non-deposition of rock materials after the Cretaceous
period, the region was affected by repeated continental glaciations during the Quaternary period.
These glaciations deposited thick alternating layers of glacial outwash (sand and gravel), glacial till
(dense mixture of silt, sand, and clay), and other types of deposits. Thus the depositional history for
most of southeastern and south-central Minnesota has left a legacy of both bedrock and glacial aquifer
systems.
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Investigation methods

Site selection

The wells for this investigation were drilled on public land to help ensure the longevity of these moni-
toring locations. With the exception of one location, all the wells are on state land managed by the
Department of Natural Resources, on either wildlife management areas (WMASs) or at water access
(WA) locations. One well site in Sibley County is owned by the county. At that location Special access
permission for that location was obtained from the County Board of Commissioners.

Site locations were chosen in suspected recharge areas for the Mt. Simon aquifer near the western
edge of the Hollandale embayment at location where the Mt. Simon Sandstone was likely to be the
uppermost bedrock to be found beneath the surf cial glacial deposits or Cretaceous shale and sand-
stone. A shallow and deep well were drilled at most locations to provide data on the vertical hydraulic
head gradients, changes in groundwater chemistry, and residence time with depth. These sites were
evenly spaced as evenly as much as possible given the existing distribution of public land in the re-
gion. The well nest locations are typically near existing roads and parking lots for easy access and to
minimize disturbance of undeveloped parts of these properties.

Drilling methods and well construction

Two different kinds of drilling methods were used to install wells for this project (Table 1). Mud
rotary (MR) is a commonly used and widely available method for drilling and completing water wells.
Typically a hollow tricone drilling bit is attached to hollow drilling rods that are turned by the drilling
rig. During the drilling process, a drilling mud mixture is pumped through the interior of the hollow
rod and bit assembly which pushes the ground rock and sediment upward through the annular space
between the drilling rods and the larger diameter borehole to the surface. The drilling mud f ows into
an open tank at the surface and is subsequently recirculated back down the inside of the drill bit/rod
assembly to the bottom of the borehole. The advantage of this method is that it is relatively fast and
inexpensive. The disadvantage of this method is that the ground-up bits of rock and sediment (also
known as “cuttings”) that the driller and geologist use to identify drilling progress become dift cult
or impossible to identify below a depth of a couple hundred feet because of mixing and mechanical
degradation of the cuttings on their way to the surface.

Another type of drilling method was used in selected areas called dual rotary/ reverse circulation (DR/
RC). During DR/RC drilling, the drill cuttings are returned to surface inside the rods. Reverse circula-
tion is achieved by pumping air down the outer tube of the rods with a large compressor. The differen-
tial pressure at the drill bit creates suction that pulls the water and cuttings up the “inner tube” which
is inside the rod. Once the water and cuttings reach the surface, the cuttings move through a sample
hose and are collected in a sample pail. RC drilling produces discrete and easily identif able rock
chips from all depths and is therefore ideal for drilling in unknown areas where the geologist does not
know exactly what to expect at depth. DR/ RC drilling is slower and more expensive than mud rotary.
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Aquifer interval selection for monitoring

Methods for well construction were somewhat different for boreholes drilled with the two methods.
For the dual rotary holes, an 8- inch or 10-inch diameter temporary steel surface casing was driven
simultaneously during drilling to the base of the unconsolidated or poorly consolidated Quaternary
and Cretaceous layers. Once solid bedrock was reached, the remainder of the hole was drilled without
casing because the hole was unlikely to collapse. Drilling continued until Precambrian bedrock was
encountered beneath the Mt. Simon Sandstone. A geophysical log of the hole was then made by the
Minnesota Geological Survey at which time the depth of the permanent 4-inch diameter casing was
decided based on the gamma log characteristics of the Mt. Simon Sandstone. The relatively shale-
free portions of the formation were typically left as open hole. The casing was then constructed by
the drilling crew and grouted in place and the temporary casing was removed. The advantage of this
procedure was that the depth of the permanent casing could be chosen based on the cuttings and the
geophysical log ensuring that the open-hole portion of the well was in the correct depth range such as
the most transmissive portion of the Mt. Simon sandstone.

Drilling with the mud rotary method followed a different sequence. A seven-inch diameter borehole
was drilled into the top of the Mt. Simon Sandstone and a four-inch steel casing was grouted in place.
Once the grout had set, the drilling crew would drill inside the four-inch casing with a smaller drill bit
and rod assembly until they had drilled through the Mt. Simon Sandstone into the underlying Pre-
cambrian bedrock. The depth at which the Mt. Simon is encountered is estimated by reference to logs
of nearby wells and carful observation of changes in the cuttings that come to the surface with the
drilling mud. The main disadvantage of this method is that if the top of the Mt. Simon Sandstone is
misidentif ed, the base of the permanent casing might not be placed at an ideal depth.

Once the deep Mt. Simon well was completed and logged with geophysical tools, the aquifer for the
shallower well in the nest was chosen based on gamma log and cuttings characteristics. These shal-
low wells were completed in the discontinuous sand and sandstone layers of the Quaternary and Cre-
taceous units at a relatively wide range of depths. In general, we were seeking the shallowest aquifer
that might be used for domestic or larger capacity purposes.

Geophysical well logging

Well logging, also known as borehole logging, is the practice of making a detailed record (a well log)
of the geologic formations penetrated by a borehole. The log may be based either on visual inspection
of samples brought to the surface (geological logs) or on physical measurements made by instruments
lowered into the hole (geophysical logs). The geophysical well log is a record of formation properties
with an electrically powered instrument. Both types of logs are used to infer properties and make de-
cisions about drilling and production operations. The geophysical log types collected for this project
include passive nuclear measurements (natural gamma rays), resistivity, and spontaneous potential.
After the borehole has been completed, but before the permanent casing has been grouted in the bore-
hole, the logging tool (or probe) is lowered into the open wellbore on a multiple conductor, armored
wireline. Once lowered to the bottom of the interval of interest, the measurements are taken on the
way out of the wellbore. Measurements are recorded continuously while the probe is moving.
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Gamma ray logging is a method of measuring naturally occurring gamma radiation to characterize the
rock or sediment in a borehole. Different types of rock emit different amounts and different spectra

of natural gamma radiation. In particular, shales and clay usually emit more gamma rays than other
sedimentary rocks, such as sandstone, or sand and gravel because radioactive potassium is a common
component in their clay content, and because the cation exchange capacity of clay causes them to
adsorb uranium and thorium. This difference in radioactivity between shales and sandstones/carbonate
rocks (or clay-rich, non-clay rich sediments) allows the gamma tool to distinguish between shales (or
clay-rich and non-clay-rich sediments).

Resistivity is a fundamental material property which represents how strongly a material opposes the

f ow of electric current. This log is run in holes containing electrically conductive mud or water. Sand
and sandstone tend to be insulators (high resistivity), and clay and shale tend to be conductors (low re-
sistivity). Similar to the gamma log, this difference in resistivity between shale (or clay-rich sediments)
and sandstones/carbonate rocks (or non-clay rich sediments) allows the resistivity tool to distinguish
between the two general categories of sediments or sedimentary rocks.

Generalized versions of the gamma logs completed by the Minnesota Geological Survey (MGS) are
shown with the lithologic logs for each of the project well nests in Appendix A. The lithologic descrip-
tions on each of these logs is summarized from MGS interpretations of cuttings.

Well development

After the borehole is drilled and the permanent well casing is grouted in the well, the well is purged
for one to two hours to remove sediment that may have accumulated at the base of the well. This well
development is designed to ensure that all or most of the open hole portion of the well unclogged and
water level measurements from the well are representative of water levels in the aquifer at that loca-
tion.

Groundwater sample collection

Protocols commonly employed for the collection of groundwater samples generally require the remov-
al of much of the standing water in the borehole prior to the collection of groundwater samples. This is
done so that the sample represents fresh groundwater and is representative of the resource. Removing
groundwater from a well can be completed through the use of many mechanical methods; including
bailers, air injection and pumping. An electric submersible well pump was selected for this project
because it is capable of removing hundreds of gallons of water from depths greater than 150 feet in

a relatively short period of time and because well performance testing information can be collected
during the same feld event. Therefore, the collection of water samples was organized to complete two
tasks; the collection of groundwater samples and a short duration well performance test.

To accomplish these two tasks, a submersible water well pump was temporarily installed and operated
by a State-certif ed water well contractor. An electric generator was used to provide power to the pump
and a combination of piping and f exible hose were installed to deliver the groundwater to the surface.
During the course of the f eld sampling events two different pumps were used. The frst pump had a
capacity of eight gallons per minute which proved too low to pump out the required volumes of water
at an acceptable rate. To speed up the feld pace, a pump capable of producing pumping rates of 25 gal-
lons per minute was used. Table 2 presents the basic information collected during these procedures.
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Groundwater was pumped through a hose from the f ow meter to a clean, white f ve gallon bucket that
allowed f eld observations of color and odor. The bucket was also used as a f ow through chamber into
which the probes of several instruments were suspended. Sequential measurements of temperature, pH
and specif ¢ conductance were made. The wells were pre-pumped until constant values of pH, tempera-
ture and specif ¢ conductance were observed. The sample was collected after the values of these param-
eters remained stable and at least one well volume of water had been removed from the well.

The sampling consisted of f lling prepared and labeled containers with groundwater from the hose dis-
charge at the stabilization bucket. The carbon-14 (*C) sample size was approximately 30 gallons and
required special handling and containers. Analytes and sampling protocol are summarized in Table 3.
Samples were sent to the University of Minnesota Hydrochemistry Laboratory (U of M) and the Uni-
versity of Waterloo Laboratory (Waterloo).

Specific capacity procedures and results

Specif ¢ capacity provides an estimate of the potential yield from a water well. It can be calculated
from the results of a short duration pumping test. Specif ¢ capacity is the pumping rate (gallons per
minute) divided by the measured drawdown (feet) and is reported in units of gallons per minute per
foot of drawdown (gpm/ft). In Minnesota’s principal aquifers, the observed specif ¢ capacities (Se-
lected Aquifer Parameters for Ground Water Provinces, 2004 DNR) range from less than 1.0 gpm/ft. to
values greater than 100 gpm/ft. Specif ¢ capacities for the Mt. Simon- Hinckley wells typically range
from 1 to 33 gpm/ft; specif ¢ capacities for glacial drift wells show greater variability from less than

1 to greater than 50 gpm/ft. As shown in Table 2, the observed specif ¢ capacities for the Mt. Simon
wells ranged from 13 gpm/ft at Exceder WMA to less than 1 gpm/ft at Helget-Braulick WMA.

The depths to groundwater were measured from dedicated measuring points located at the top of the
well casings. For this project the measuring points elevations were measured using engineering grade
global positioning systems (GPS) that use the Minnesota Department of Transportation Continuously
Operating Reference Station (CORS) network. The measuring point at each well is on the north side of
the top of the four-inch diameter steel well casing (top of casing or TOC). Groundwater depth mea-
surements were collected before, during and after pumping using electronic tapes and electronic pres-
sure transducer instruments.

A fow meter was used to measure rate and a f ow totalizer was used to measure total water discharge in
gallons. The f ow rate from the well was controlled with the well head check valve. At the start of each
pumping test the valve was opened to allow the full pumping rate. Some of the wells were pumped at
rates lower than the capacity of the pump to maintain water levels above the pump intake. DNR ob-
servation well 83012 and Flandrau State Park campground well was not accessible for instrumentation
and is not represented in Appendix B with a hydrograph.

Continuous water level measurements

Unattended continuous water level measurements can be made with pressure transducers — instruments
that respond to changes in pressure created by the water column above the instrument. A data logger
can record the measurements taken by a pressure transducer at specif ¢ intervals set by the user. Im-
provements in technology over the last decade have resulted in combined data logger/pressure trans-
ducer units that are about the size of a small f ashlight.
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Sealed data logger/pressure transducer units were submerged in each well to a depth of 20 to 25 feet
below the water surface. Sealed units record changes in total pressure including barometric pressure.

To sort out changes in pressure reading that are related to barometric pressure from real water level
changes, a record of barometric pressure must also be made. Three data logger/barometer units were
deployed across the study area for this purpose. All of the instruments were programmed to collect
and store hourly readings.

Data are stored in the data logger until the quarterly site visit occurs. Communication cables con-
nected to the instruments are accessible from the top of each well. The data are downloaded from the
instruments, a water level measurement is taken with a measuring tape, and computer software cali-
brates the data stream to the actual measurements and adjusts for changes in barometric pressure.

Thickness of the Mt. Simon aquifer near the western subcrop

One of the objectives of the project was to better def ne the physical boundaries of the Mt. Simon
aquifer in the study area to help with future water resource evaluations. With the exception of the well
at the Nicollet Bay unit, all the Mt. Simon wells drilled for this project penetrated to the base of the
formation. Most existing wells in this area (Figure 4) provide a minimum thickness value since most
of the wells are domestic and are only drilled into the top of the aquifer to provide relatively small
quantities of water.

Across the study area thicknesses of the Mt. Simon aquifer increase toward the east over a short
distance with the exception of an apparently broad and thin (0-50 feet) area in eastern Brown county.
East of the western aquifer edge the Mt. Simon aquifer is commonly 200 feet thick or greater (Moss-
ler, 1992).

Groundwater movement and potentiometric surface — Mt. Simon aquifer

A key aspect of understanding the hydrogeology of any area is to develop a basic understanding of the
groundwater f ow pathways. Aquifers and systems of aquifers are rarely static or unchangeable. Water
is usually moving into the aquifers (recharge), through the aquifers, and out of the aquifers (discharge)
in complicated but def nable patterns. Three primary types of data are used by investigators to under-
stand these relationships: chemical data from collected samples, aquifer test data gathered by pumping
wells under controlled conditions, and static (non-pumping) data measured from wells and surface
water bodies. Static water-level data and potentiometric surfaces are the primary focus of this section.

A potentiometric surface is def ned as “a surface that represents the level to which water will rise in a
tightly cased well (Fetter, 1988). The potentiometric surface of a conf ned aquifer (aquifer under pres-
sure) occurs above the top of an aquifer where an overlying conf ning (low-permeability) layer exists.
Static (non-pumping) water-level data from the County Well Index and measurements by personnel
from the Department of Natural Resources were plotted and contoured to create the potentiometric
contour map (Figure 5). Additional wells in fractured Precambrian crystalline aquifers beyond the
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extent of the Mt. Simon aquifer are included to show the hydraulic head conditions near the bound-
ary of the aquifer. The contour lines illustrate the potentiometric surface much like the contour lines
of a topographic map represent a visual model of the ground surface. The potentiometric surface is
generally not the physical top of the water table, but is a representation of the potential energy that is
available to move the ground- water in a conf ned aquifer. Low-elevation areas on the potentiometric
surface that could be above the coincident surface-water bodies may indicate discharge areas; when
combined with other information sources, high-elevation areas on the potentiometric surface can be
identif ed as important recharge areas. Groundwater moves from higher to lower potentiometric eleva-
tions perpendicular to the potentiometric elevation contours (f ow directions shown as arrows).

Groundwater f ow pathways from recharge areas through the aquifer to discharge locations operate on
a wide continuum of depth, distance, and time. Flow into, through, and out of shallow aquifers can oc-
cur relatively quickly in days or weeks over short distances of less than a mile, whereas f ow through
deeper aquifers across dozens of miles may take centuries or millennia.

Figure 5 shows northeasterly groundwater f ow directions toward the Minnesota River in the south-
ern portion of the study area. In the northern portion of the study area f ow is southeasterly in Sibley
County and then diverges toward the Minnesota River in Nicollet County at a very low gradient. This
map and Figure 6 (cross section Z-Z’) the potentiometric contours bend toward the Minnesota River
indicating that it is a discharge feature for the Mt. Simon aquifer. Even though the potentiometric con-
tours indicate discharge to the Minnesota River, the previously mentioned low gradient in the northern
portion of the study area could indicate low f ow to the river.

Geochemistry

All the wells constructed for this project and two additional wells in the area were sampled for analy-

sis of common ions, trace constituents, residence time indicators (tritium and *C), and stable isotopes

("0 and deuterium). The results of all these analyses (Tables 4 and 5) assist in the interpretation of the
recharge characteristics of the Mt. Simon aquifer.

Groundwater Residence Time

Two residence time indicators were used in this project: tritium and carbon-14 ('*C). Residence time
is the approximate time that has elapsed from when the water inf Itrated the land surface to when it
was pumped from the aquifer for these investigations. In general, short residence time suggests high
recharge rates, whereas long residence time suggests low recharge rates.

Tritium (*H) is a naturally occurring isotope of hydrogen. Concentrations of this isotope in the at-
mosphere were greatly increased from 1953 through 1963 by above ground detonation of hydrogen
bombs (Alexander and Alexander, 1989). This isotope decays at a known rate, with a half-life of
12.43 years. Groundwater samples with concentrations of tritium equal to or greater than 10 tritium
units (TU) are considered recent water (mostly recharged in the past 60 years). Concentrations equal
to or less than 1 TU are considered vintage water (recharged prior to 1953). Concentrations between
these two limits are considered a mixture of recent and vintage water and are referred to as mixed
water).
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The carbon-14 (**C) isotope, which also occurs naturally, has a much longer half-life than tritium (5730
years). Carbon-14 is used to estimate groundwater residence in a time span from about 100 years to
40,000 years (Alexander and Alexander, 1989).

With one exception, none of the groundwater samples contained detectable tritium concentrations (Table
4) and therefore, the residence time for these samples is greater than approximately 60 years. This is con-
sistent with the generally high depths of the sampled aquifers and general lack of thick surf cial sand and
gravel in the study area. The one mixed tritium sample was from the shallow well at the Long Lake WA
that was screened in a sand and gravel aquifer at a depth of 128 feet.

Figure 7 shows the distribution of “C residence time values from the shallow wells constructed for this
project. These values represent data from aquifers with a wide depth range (70 to 444 feet). This map,
therefore, is not intended to show any regional trends or tendencies but is shown to illustrate the wide
range of values in these settings. These values are more interesting in comparison to the values discussed
below and shown in Figure 8 from the underlying Mt. Simon aquifer.

Figure 8 shows the distribution of “C residence time values from the Mt. Simon wells constructed for
this project, two additional Mt. Simon wells sampled for this project, and Mt. Simon data from other
studies (Lively and others, 1992; Alexander, personal communication). Values in the southern portion of
the study area range from 7,000 — 8,000 years in central Watonwan County to 30,000 years near the Min-
nesota River following a pattern of increasing age away from central Watonwan County. The youngest
values (8,000-10,000 years) in the northern portion of the study area occur in northeastern Sibley County
and also increase in age toward the Minnesota River to the south and east.

The younger *C residence time values (7,000-8,000 years) roughly correspond to a time not only after
the last ice sheet had receded from southern Minnesota, but also after the time when the modern day
Minnesota River Valley (Glacial River Warren) ceased to be the main discharge route for the glacial melt
water (9,500 years) that was stored in Glacial Lake Agassiz (Wright, 1987). These “C values and the
unique glacial history of the region suggest groundwater in the Mt. Simon aquifer in this region began as
precipitation that inf Itrated during the post-glacial period. The stable isotope data described in the fol-
lowing section provided important corroborating evidence for this conclusion.

Stable Isotopes, *0O and Deuterium

All groundwater samples collected from the study area were analyzed for stable isotopes of oxygen and
hydrogen, the two atoms found in water. Analysis of the results provides an additional tool for character-
izing the area groundwater. Isotopes of a particular element have the same number of protons but differ-
ent numbers of neutrons. Stable isotopes are not involved in any natural radioactive decay. They are used
to understand water sources or the processes affecting them (Kendall, 2003). Commonly used isotopes
for these purposes include oxygen isotopes '°O and 'O and hydrogen isotopes 'H and *H. The heavy
hydrogen (°H) is called deuterium. The mass differences between 'O and 8O or 'H and *H result in water
molecules that evaporate or condense at different rates. Thus the concentrations of these isotopes in water
changes (fractionates) during evaporation and precipitation, resulting in different '*O/**O and "H/?H ratios
in rain, snow, rivers, and lakes. The values are expressed as del’H and del'®O. The abbreviation “del”
denotes the relative difference from standard mean ocean water and express the relative abundance or

the rarer heavy isotopes, del’H and del'®O. These values from precipitation water generally plot close to
a straight line known as the meteoric water line (Figure 9). The departure of '*O and ?H values from the
meteoric water line can indicate evaporation or mixing of water from different sources.
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Figure 9 shows a plot of del'®O and del’H values from groundwater samples collected in the study area
compared to the meteoric water line. Three types of information regarding the origin and history of
these water samples can be interpreted from this graph: relative atmospheric temperature during source
water precipitation, relative mixing of water from cold and warm sources, and evaporation of source
water.

Source water temperature and mixing

For the samples that plot along the same slope as the meteoric water line, the samples more depleted in
heavy isotopes (samples that plot closer to the bottom left of the graph) suggest water that precipitated
from a colder atmosphere (Siegel, 1989). Person et al (2007) provided a compilation of paleohydrologi-
cal studies of groundwater systems in North America that were affected by the advance and retreat of
the Laurentide ice sheet. He concluded that the range of del'*O groundwater values from cold ice or
snow melt sources ranges from del -25 to -9. Most values of groundwater samples from south central
Minnesota ranged from approximately del -8 to del -10 suggesting a mixture of glacial meltwater and a
larger component of post-glacial precipitation. The data are consistent with the younger '*C ages dates
(7,000 to 8,000 years) from the post-glacial and post River Warren era as discussed previously.

It is also signif cant to note that many of the older '“C values in this area are in the range of the last
glacial advance in the upper Midwest (12,000 to 24,000 years BP) but the del'®*O values are just slightly
within the range of water from ice melt sources (del-25 to del-9). This apparent discrepancy suggests
that these waters are from mixed sources and time periods, indicating a combination of much younger
and much older water. Recognizing that all groundwater is a mixture, Mt. Simon '*C residence time
values greater than 9,000 or 10,000 years may represent a minimum age in these areas.

Evaporation of Source Water

Deuterium (*H) is an isotope of hydrogen consisting of a proton and a neutron, whereas hydrogen ('H)
consists of a proton. Deuterium, therefore, has approximately twice the mass of common hydrogen.
Similarly, oxygen-18 ('®0) has more mass than the more common oxygen-16 (°O). Fractionation
occurs because of these mass differences. Molecules of water with the more common hydrogen and
oxygen are lighter and more readily evaporated, leaving the remaining water more concentrated in the
heavier isotopes. As a result, lake water typically shows an evaporative signature (a higher concentra-
tion of the heavier isotopes than precipitation). Water that directly inf Itrates the ground is not fraction-
ated in this manner, so it has a meteoric signature (higher concentration of the lighter, more prevalent
isotopes). The effect of this type of fractionation is that isotopic values from samples with an evapora-
tive signature will plot along a line with a slope less than the slope of the meteoric water line.

On Figure 9 the evaporated types of samples are shown on the right upper portion of the graph (Peter-
son unit, Helget Braulick WMA, and the Nicollet Bay unit). These three samples, from buried sand and
gravel aquifers, show evidence of water that inf Itrated from lakes or wetlands.

The majority of samples plotted in the center portion of the graph along the meteoric water line (Figure

9) suggest sources from post ice-age precipitation (normal rain and snow meltwater) that inf Itrated
directly into the subsurface and did not reside for long periods in lakes or similar water bodies.
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Major lons

Some evidence of distinct source water types and mixing of these waters can be understood by con-
sidering the relative abundances of some common cations and anions as ion concentrations plotted as
percentages from area groundwater samples. Figure 10 shows the relative abundances of these common
ions plotted on a ternary plot. Table 5 also shows the concentrations of these constituents in mg/l. The
most common type of water in this area has Ca and Mg (Ca+Mg) as the predominant cation. There is a
fairly even distribution between waters containing bicarbonate as the primary anion and waters contain-
ing sulfate as the predominant anion. The bicarbonate type of water is common in glacial aquifers of
the upper Midwest (Freeze and Cherry, 1979, p. 284) and is derived from dissolution of calcite and
dolomite minerals in soil and glacial sediments by inf Itrating precipitation. Higher sulfate concentra-
tions in the Mt. Simon aquifer tend to occur in the southern and western portions of the study area (Fig-
ure 11) where inf ltrating water has passed through Cretaceous sandstone and shale layers that contain
sulfate minerals such as gypsum and anhydrite.

The data from a few samples plotted on the lower right corner of the cation ternary plot show that

some Na/K waters are also present in the area. These Na/K type waters (Mt. Simon aquifer: Norwegian
Grove and Flandreau; Sioux Quartzite: Courtland West) may have a partial deep bedrock origin. Other

evidence of deep isolated groundwater or upwelling from deep crystalline bedrock sources is suggested
by some elevated chloride values of samples collected near the Minnesota River Valley (Figure 12). El-
evated chloride values at the Helget Braulick and Peterson unit sites should be dismissed since samples
from these wells probably contain some chloride from the chloride disinfectant that was added to these
wells during the well construction process.

Trace Elements

Analysis of groundwater samples for a suite of trace element constituents reveal exceedences of drink-
ing water standards for boron (one sample) and arsenic (f ve samples). A boron concentration of 1,910
ug/l (ppb) was measured in water from the Lake Hanska well that was completed in a Cretaceous sand-
stone aquifer. The Minnesota Department of Health (MDH) health risk limit (HRL) for this element is
600 ug/l. This elevated value is not typical of concentrations measured in the rest of the samples which
otherwise ranged from 74 to 464 ug/l (Table 4). The reason for the elevated concentration of boron is
unknown; however, the most negative '*O value (del -10.27) of all the samples collected in the study
area was also detected in the sample from this well which suggests that this aquifer is relatively stag-
nant and isolated.

Arsenic concentrations that exceeded the federal drinking water standard of 10 ug/l were detected in
samples collected from f ve wells, three from buried sand and gravel aquifers and two from the Mt.
Simon aquifer (Table 4 and Figure 13). Two of the exceedences (Nicollet Bay unit and Helget-Braulick
WMA) from buried sand and gravel aquifers also contained water from evaporated surface water
sources (discussed in evaporation of source water section). Arsenic in groundwater tends to come from
disseminated mineral sources in glacial till (MDH, 2001; Erickson, M.L. 2005). Arsenic can be re-
leased from these minerals into solution by oxygenated water. Inf ltrated lake water could be a possible
source of oxygenated water resulting in the elevated arsenic concentrations found in these samples.

Two of the elevated arsenic samples were collected from the Mt. Simon wells at the Peterson unit and

the Nicollet Bay unit. Both of these wells are near Swan Lake in Nicollet County, the apparent source
of the evaporated water from the shallow Nicollet Bay unit well. Elevated arsenic values in the Mt.
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Simon aquifer may be also due to mobilization of arsenic by oxygenated lake water that has inf Itrated
through multiple interconnected layers of glacial sand and till.

Hydrogeology illustrated by cross sections and hydrographs from
observation well nests

A set of 12 geologic cross sections were created for this report to provide location-specif ¢ represen-
tations of the stratigraphy and geologic structure for each well nest and to provide a hydrogeologic
context for the hydrograph and geochemical data. The cross sections were constructed by projecting
lithologic, stratigraphic, and well construction information onto the line of each cross section (Figure
3) from within a one kilometer zone on either side of the cross section.

Water level data were plotted to create hydrographs illustrating water elevation changes over time.
Hydrographs provide a method of representing large amounts of data from one or more well. The wa-
ter elevation hydrographs are included in the Figures section. Each displays the water levels recorded
in two wells nested at the same site, the Mt. Simon well (blue) and the shallower depth well (red).
Nested wells are located at the same site within a few feet of each other. On several hydrographs the
difference in water elevation is large enough to require the use of a secondary axis. The shallower well
information is set on the secondary axis and the corresponding units are indicated on the right side of
the hydrograph.

Seasonal high and low water level cycles are apparent on most hydrographs. These are yearly cycles
where groundwater levels decline during the summer months and increase during the winter and
spring. In many cases both nested wells follow similar trends. Average cumulative precipitation
increased throughout the period of record for the water level data (Figure 14). A corresponding rise
of water levels throughout 2010 is apparent from the hydrographs at several sites. Considering the
relatively old residence times typical of most aquifers that were sampled for this study most of these
water level fuctuations are not caused by rapid inf Itration of precipitation (recharge), but a pressure
response to the increased volume and weight of additional groundwater in the overlying water table
aquifer and shallow buried aquifers (Maliva et al, 2011).

The hydrograph data of the nested observation wells, shown on Figures 15b through 26b, show two
general patterns of vertical gradients: downward and upward. Most of the hydrograph comparisons
show a downward gradient. A downward gradient exists where the shallower groundwater elevation
is higher than a deeper groundwater elevation. This condition indicates that groundwater will move
downward, if a f ow pathway is available. Within this group of downward gradient hydrograph pairs
most of the hydrographs follow identical although offset patterns (Sibley County Landf 11, Peterson
Unit, Bergdahl WMA, Case WMA, Madelia WMA, Exceder WMA, and Rooney Run WMA). These
identical patterns strongly suggest that f uctuations within both the shallow and Mt. Simon aquifers are
due to pressures affects of changes in the overlying water weight of the water table aquifer. A smaller
group of downward gradient nests (Severance Lake WMA, Nicollet Bay Unit, and Helget Braulick
WMA) show shallow aquifer patterns that a different from the Mt. Simon hydrograph pattern suggest-
ing local pumping or surf cial inf uences in the shallow aquifer.
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The Courtland West Unit, Long Lake WA, and possibly Norwegian Grove WMA sites demonstrate
locations where upward groundwater movement is apparently occurring. At these locations the ground-
water elevation from the shallower well is lower than the deeper bedrock groundwater elevations indi-
cating an upward gradient condition. An upward gradient suggests that groundwater from the deeper
bedrock will move upward if a f ow pathway is available due to local pumping inf uences or proximity
to major discharge zones such as the Minnesota River.

Cross section A-A’ and Severence Lake WMA hydrograph (Figures 15a and b)

The Severence Lake WMA is located in northern Sibley County near the subcrop (eastern edge) of the
Mt. Simon. The shallow well was completed in a buried sand and gravel aquifer that appears to be part
of a stack of intermingled and hydraulically connected sand bodies. The hydrograph from this well
shows several feet of variation throughout 2010 with low water levels occurring during summer and
early fall (high water use period) and higher recovery values occurring through late fall through early
spring. A similar but more muted pattern is apparent for the Mt. Simon aquifer, suggesting no connec-
tion or a very minor connection to the summer pumping that is occurring in the area.

Cross section B-B’ and Sibley County landfill property (Figures 16a and b)

The well nest on the Sibley County landf 11 property in central Sibley County is located near the City of
Gaylord. The Gaylord city wells and some domestic wells completed in the same buried sand aquifer
as the shallow well are shown northwest of the well nest. The stratigraphy and geochemistry shown

on Cross section B-B’ (Figure 16a) suggest a direct hydraulic connection between the buried sand and
gravel aquifer that the shallow well is completed in and the Mt. Simon aquifer. The well nest hydro-
graphs (Figure 16b) show a downward gradient from the buried sand and gravel aquifer. The area stra-
tigraphy, old residence times, and identical water level f uctuation trends suggest that the water level
fuctuations are a pressure response to the changes in weight of overlying water table aquifer.

Cross section C-C” and Norwegian Grove WMA hydrograph (Figures 17a and b)

The Norwegian Grove WMA well nest in northern Nicollet County is located at the eastern edge of the
Mt. Simon subcrop. The cross section (Figure 17a) shows the shallow well is completed in a stack of
intermingled, and hydraulically connected sand bodies and an almost direct connection of these buried
sand aquifers to the underlying Mt. Simon aquifer. The hydrographs (Figure 17b) shows a very slight
upward gradient from the Mt. Simon to the buried sand and gravel aquifer. The hydraulic connec-

tion between the two aquifers, however, may not be very extensive since there is a large difference in
groundwater residence time (4,000 years versus 20,000 years) and chloride/sodium concentrations.

Cross Section D-D’ and Peterson Unit Hydrograph (Figures 18a and b)

The Peterson unit well nest in central Nicollet County is located near the eastern edge of the Mt. Simon
subcrop. The hydrograph (Figure 18a) shows very little f uctuation in water levels (approximately one
foot) and the buried sand aquifer levels are about eight feet higher than those of the Mt. Simon. These
water level data and the 22,000 year *C residence time of the Mt. Simon aquifer suggest that these
aquifers are not directly connected and are both relatively isolated.
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Cross section E-E’ and Courtland West/Nicollet Bay unit hydrographs (Figures 19a, b and c)

The geologic setting of two well nests (Courtland West unit and Nicollet Bay unit) in south cen-

tral Nicollet County and an existing well that was sampled (Flandreau State Park) in eastern Brown
County, is shown on this cross section. An upward gradient exists at the Courtland West site, east of the
Minnesota River, which may result in upward groundwater f ow direction due to the proximity of the
river. Upward gradients are commonly found near major rivers where groundwater discharges to the
alluvial aquifer from underlying aquifers locally. West of the Minnesota River a similar upward gradi-
ent is suggested by the 30,000 year “C residence time and high sodium - chloride concentrations (Table
5 and Figure 12). These chemical characteristics suggest old, isolated groundwater from the underlying
crystalline bedrock is moving upward through the thin Mt. Simon aquifer to the base of the Minnesota
River alluvium.

At the Nicollet Bay unit location at the east side of the cross section the shallow well is shown complet-
ed in a stacked complex of buried sand and gravel aquifers. The graph of stable isotope values (Figure
9) shows that the sample from this well contains some water from an evaporated surface water source.
The detectable tritium concentration from this sample is also good evidence of focused recharge at this
location. The relatively constant water level elevation measurements from this well (Figure 19¢) and
these chemical characteristics suggest a strong hydraulic connection to a stable surface water source
such as Swan Lake. The hydrograph of the Mt. Simon well at this location appears to show some inf u-
ence from local pumping possibly from the wells shown on the cross section west of the Nicollet Bay
well nest.

Cross section F-F’ and Helget-Braulick WMA hydrograph (Figures 20a and b)

The Helget-Braulick WMA well nest is located in central Brown County near the western edge of the
Mt. Simon subcrop. The shallow well, completed in a buried sand and gravel aquifer, contained some
groundwater from an evaporated surface water source (Figure 9). A very short *C residence value (500
years) is consistent with this stable isotope data. In addition, the hydrograph trend follows the precipi-
tation trend of higher than average rainfall during the summer of 2010, also suggesting a hydraulic
connection and pressure response to the additional water at or near the surface. The muted but similar
hydrograph pattern of the Mt. Simon well hydrograph is probably a pressure response.

Cross section G-G’ and Bergdahl WMA hydrograph (Figure 21a and b)

The Bergdahl WMA well nest of northeastern Watonwan County and a shallower well completed in
Cretaceous sandstone at the SE Lake Hanska WA are shown on this cross section. The deeper well that
was planned for the Lake Hanska site was not built since no Mt. Simon sandstone was found at this site
during drilling. Both hydrographs in the Bergdahl WMA well nest show a rising pressure response cor-
responding to a cumulative increase in precipitation in the area.

Cross section H-H’ and Case WMA hydrograph (Figures 22a and b)

The Case WMA well nest located in eastern Watonwan County and an irrigation well that was sampled
for this project are shown on this cross section. Some of the youngest Mt. Simon groundwater in the
area was collected from the irrigation well which is located at the eastern edge of the Mt. Simon sub-
crop. The 7,000 year "“C residence time from this well is actually younger than groundwater that was
sampled from the shallower buried sand and gravel aquifer at the Case WMA well nest. This irrigation
well sample also contained elevated concentrations of sulfate indicating migration through the overly-
ing sulfate mineral rich Cretaceous sandstone and shale. Both hydrographs at the Case WMA well

20  South-Central Minnesota Groundwater Monitoring of the Mt. Simon Aquifer



nest show an approximate 4.5 foot pressure response rise in water levels throughout 2010 which corre-
sponds to a cumulative increase in precipitation in the area.

Cross section I-1" and Madelia WMA hydrograph (Figures 23a and b)

The Madelia WMA well nest located in eastern Watonwan County is shown on the eastern side of this
cross section. The Mt. Simon sample from this location was also one of the youngest '“C residence
values suggesting a closer proximity to the eastern edge of the Mt. Simon subcrop than is suggested by
this cross section or Figure 4. Both hydrographs at the Madelia WMA well nest show an approximate
4.5 foot pressure response rise in water levels throughout 2010 corresponding to a cumulative increase
in precipitation in the area.

Cross section J-J ‘and Long Lake WA hydrograph (Figures 24a and b)

The Long Lake WA well nest located in south central Watonwan County is shown on the western side
of this cross section possibly near the center of the Mt. Simon subcrop. Similar to the sites described
on cross sections H-H” and I-I’, the Mt. Simon '“C residence time value at this location is among the
youngest (8,000 years). Elevated sulfate concentrations indicate groundwater migration through the
overlying Cretaceous sandstone and shale.

The shallow well was completed in a buried sand and gravel aquifer just above the Cretaceous sand-
stone and shale. The gradient between the shallow well and the Mt. Simon well is upward (lower
hydraulic head in the shallow aquifer compared to the deeper aquifer) possibly due to intensive pump-
ing of the shallow buried aquifers from domestic wells surrounding Long Lake. The approximate 1.5
to 2.5 foot rise of water levels in both wells throughout 2010 corresponds to a cumulative increase in
precipitation in the area.

Cross section K-K” and Exceder WMA hydrograph (Figures 25a and b)

The Exceder WMA well nest, located in north central Martin County, is shown near the center of this
cross section. The approximate two-foot pressure response rise of water levels in both wells throughout
2010 corresponds to a cumulative increase in precipitation in the area.

Cross section L-L” and Rooney Run WMA hydrograph (Figures 26a and b)

The bedrock geology of the Rooney Run area is relatively unknown. The top of the Mt. Simon Sand-
stone at the DNR observation well site was deeper than the Mt. Simon tops from wells drilled in the
Welcome area (Figure 26b). Therefore, a fault is shown on cross section L-L’ northwest of Welcome

to account for this elevation difference. Southwick (2002) also shows a fault in this area shown as an
“Inferred fault, mapped beneath the Sioux Quartzite or Paleozoic strata.” The hydrographs of the buried
sand and gravel and Mt. Simon wells show very little f uctuation during 2010 and are diff cult to inter-
pret without a longer period of record.
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Paleohydrology and Recharge Estimates

Data and interpretations generated by this project provide some basis for a rough estimate of ground-
water recharge through overlying glacial sediments and Cretaceous formations to the Mt. Simon
aquifer subcrop in south central Minnesota. In addition to improving the general understanding of the
aquifer boundaries, thickness, permeability, and extent of overlying conf ning units, basic data have
been generated regarding the residence time of groundwater in the Mt. Simon aquifer and its source
water characteristics.

The 7,000-8,000 year residence time of Mt. Simon groundwater in the region (Figure 27- Watonwan
County and adjoining areas and northern Sibley County near the City of Arlington) and development of
post-glacial drainage conditions in the Minnesota River Valley at approximately 9,000 years BP (before
present) suggests the current f ow conditions toward the valley and slow recharge of the aquifer began
at approximately that time. Prior to that time the much larger volume of water f owing through the val-
ley as glacial River Warren would have created higher head conditions in that area and a lower gradi-
ent that would have inhibited f ow toward the valley in the Mt. Simon and overlying aquifers. Siegel
(1989) suggests that f ow in the Mt. Simon aquifer during the glacial maximum (16,000-14,000 years
BP) was easterly toward the ancestral Mississippi River.

A conceptual model of recharge to the Mt. Simon subcrop is based on geochemical data shown on the
generalized cross section Z-Z’ (Figure 28) which extends from the Long Lake WA site in southwestern
Watonwan County to the North Star WMA observation well in the Minnesota River Valley. This cross
section is drawn perpendicular to the potentiometric contours of the Mt. Simon aquifer and is meant to
represent a f ow path from the recharge areas southwest of the Minnesota River to the discharge area
(Minnesota River).

On cross section Z-Z’ '*C residence times are younger in areas to the southwest in the Mt. Simon aqui-
fer and overlying aquifers. Higher sulfate concentrations in the Mt. Simon aquifer in the southwest in-
dicate downward groundwater f ow through the overlying Cretaceous formations. Slightly higher chlo-
ride concentrations have been detected in wells closer to the discharge area suggesting some upward
migration of older water from Precambrian crystalline bedrock. Finally, the least negative (warmer)
del O values are found in Mt. Simon wells on the left portion (upgradient) of the cross section and in
the shallower wells, whereas the more negative del 8O values (colder) were found in wells on the right
(downgradient) portion of the cross section.

Southern area recharge

A recharge model based on this information is shown in Figure 29. The groundwater residence time
values from most of the Mt. Simon wells are assumed to be an average value of age-stratif ed water in
the well. Actual values from discrete intervals within the wells might vary from top to bottom. There-
fore, an assumed 5,000 year value contour was placed near the top of the Mt. Simon aquifer for the
wells in the “post-glacial recharge” area. The depth to the top of this contour in this area ranges from
approximately 350 to 450 feet. Assuming an average inf Itration depth of 400 feet, groundwater inf I-
trating to the top of the Mt. Simon aquifer moved at approximately 0.08 feet/year or approximately 2
cm/year. The area labeled “post- glacial recharge” (Figure 27) is approximately 1,000 square km (386
square miles). The volume of recharge across this area would be approximately 20 million cubic meters
or about 5 billion gallons/year.
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Northern area recharge

A similar recharge estimate of the Mt. Simon aquifer for the eastern portions of Nicollet and Sibley
Counties (area north and west of the Minnesota River) is more diff cult since only a small portion of
the area west of the City of Arlington and the Severence Lake WMA is shown as post-glacial recharge
(Figure 27). In most of this area '“C residence time values are approximately three times older than the
youngest values southwest of the Minnesota River. In general, groundwater recharge of the Mt. Simon
in the northern portion of this region (north and west of the Minnesota River) is probably lower than in
the southern part of this region (south of the Minnesota River).

2009 Groundwater Appropriation

Southern area appropriation

For this appropriation discussion the southern area is def ned as a triangular area that extends from the
southernmost well nest (Rooney Run WMA) to Mankato and along the Minnesota River to New Ulm
(Figure 30). Mt. Simon groundwater in the southern area is currently used by permitted (large capacity)
municipal wells, agricultural processing wells, and irrigation wells (DNR web page). The DNR 2009
reported use data indicate approximately 2.2 billion gallons were pumped out of the Mt. Simon aquifer
in this area. However, the actual volume pumped from just the Mt. Simon aquifer is smaller since some
of the older municipal wells in the area are also open to overlying aquifers. This volume, therefore, may
be approximately one third of the post-glacial recharge described in the previous section. Permitted
volumes (volume of water that the users are allowed to pump) for appropriators in this area are approxi-
mately 4.7 billion gallons/year, or roughly equal to the estimated Mt. Simon post-glacial recharge in the
southern area.

Northern Area Appropriation

The northern area is def ned as the eastern parts of Nicollet and Sibley Counties. Mt. Simon ground-
water in the northern area is currently used by permitted (large capacity) municipal wells, agricultural
processing wells, and crop irrigation wells, and golf course irrigation wells (DNR web page). The DNR
2009 reported use data indicate approximately 1.1 billion gallons were pumped out of the Mt. Simon
aquifer in this area. As in the southern area, the actual number from just the Mt. Simon aquifer is smaller
since some of the older municipal wells in the area are also open to overlying aquifers. Permitted vol-
umes for appropriators in this area are approximately 1.9 billion gallons/year.
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Conclusions

The results of this project suggest that Mt. Simon groundwater use in the study area, for the most
recent period, may be below the replacement rate along the Mt. Simon subcrop. However, the sum of
the permitted volumes may be equal to those replacement rates. The region is currently not an area of
rapid municipal or industrial growth. Locally intensive groundwater pumping can create groundwa-
ter interference issues (lowered water levels in nearby wells or surface water features) but at current
extraction the region appears to be in a steady state. The effect of future increases in groundwater ap-
propriation from the Mt. Simon due to population growth, industrial development, or drought might
push this resource beyond this steady state. However, a major accomplishment of this project is the
creation of a network of observation well nests along the western margin of this aquifer system. Long
term water level data and geochemistry from these wells will enable future hydrologists to evalu-

ate the local and regional affects of any future expansion of Mt. Simon groundwater pumping in the
region beyond current volumes. In addition, this project demonstrated the value of continuous, nested
water level measurements, and groundwater chemistry/residence time data in constructing conceptual
models of groundwater f ow and recharge.
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Geological Log Legend

Lithologic Description Lithologic Symbol

Top Soil

Till

Lake Deposit

Outwash

Sandstone

Sandstone
and shale

Shale

Quartzite

Igneous or
metamorphic
bedrock
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Geological / Geophysical Logs and Well Construction Diagrams

Site Name Severance Lake WMA
County Sibley
Nested Well Construction
Depth Elevation Lithology 0 Gamma 250

770442 MN Unique 770443

—0 _
| 1000 |\ Topsoil XQA

K L Till (multiple sources with : QC

| outwash) i <>

= r XO — Grout — Grout
L A

r [ [~ pa)

L = U 2 | ——— Water
— 100 level
- — 900 .

= =

i i XOA i

i Outwash e ——— Wwater ess— 4 Inch
i i O O B level casing
r B Till (multiple sources with = H

r outwash) R

- = |

- O B

- — 800

C N_ 4

- r Outwash - Undifferentiated NN ——— 4 Inch

0 2,8, O Casing

- L . O = well
L L O %24 screen
— 300 ()

- — 700 o

K L Lake deposit

L - 3§_?_

- = i:‘

— 400 Eau Claire Formation

- — 600

- - Mount Simon Sandstone

— 500

- — 500

i L ——— Open

K Hole

— 600

- — 400 -

| Hinckley Sandstone
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Geological / Geophysical Logs and Well Construction Diagrams

Site Name Rooney Run WMA
County Martin
Nested Well Construction
Depth Elevation Lithology 0 Gamma 250
771163 MN Unique 771161
fo — 1200 Fopsoi \A<>
i i Till - New Ulm Formation X 1 — Grout —— Grout
L i O<> - ——— Water —1—— Water
i i Outwash (NW source) N4 ] level level
— 100 — =
L 1100 Till (NW source) \A<>
i _ XOA
K r Lake deposits (NW source) i
K B Till (NW source) 1 T
— 200 | 1000 -~
- L k A —— 4-inch
- . QC casing
| e
— 300 — 900 - <>
= - XOA —— 4inch
L L Lake deposits - casing
L undifferentiated
— 400 — 800
B N Outwash (NE Rainy source) i
= L =—— Well
- Wonewoc Sandstone (Upper Screen
- - Cambrian)
— 500 — 700
r r Eau Claire Formation (Middle
K N to Upper Cambrian)
. | Mount Simon Sandstone
L (Middle Cambrian)
— 600 — 600
N - Pre-Mount Simon saprolith — - —]
N ? T L
B i ? — = = ——— Open
L o - hole
— 700 — 500 |/Granitic rock? (Neoarchean) \[~ 7 .
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Geological / Geophysical Logs and Well Construction Diagrams

Site Name Swan Lake WMA Peterson Unit
County Nicollet
Nested Well Construction

Depth Elevation Lithology 0 Gamma 250

770449 MN Unique 770450
jo Topsoil
r Till - Des Moines Lobe (high ~ Grout <
= - shale member)
r — 900
— 100
I B Outwash - Des Moines Lobe
r (moderate shale member)
= Till - Des Moines Lobe | Water a
L L (moderate shale member) level
; 200 — 800 —— 4inch

casing

r = Outwash
- =
= Unnamed formation (Lower [ "
L L to Upper Cretaceous, Albian [
L to Cenomanian) P
r — 700 *:*:’
— 300 ]
r - T =
L Eau Claire Formation =T
L | =
L Mt. Simon sandstone
r — 600
— 400 =
L B ——— Open
L hole
r — 500
— 500
I Unnamed granite/gneiss
r o (Archean)
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Grout

4-inch
casing

Water
level

Well
screen



Depth Elevation

82

— 500

Lithology

Geological / Geophysical Logs and Well Construction Diagrams

Topsoil

Till - Des Moines Lobe (high
shale member)

Outwash - Traverse des

Sioux Formation (Rainy lobe)

Till - Traverse des Sioux
Formation (Rainy lobe)

Outwash - Traverse des
Sioux

Till - Traverse des Sioux

Outwash (NW source)

Till (NW source)

Outwash (NW source)

Lake deposits

Outwash (NW source)

Lake deposits - Undiff.

Outwash - Undifferentiated

Eau Claire Formation

Mt. Simon sandstone

Fond du Lac Formation

Site Name Norwegian Grove WMA
County Nicollet
Nested Well Construction
0 Gamma 150
770444 MN Unique 770445
1 Grout — Grout
—— 4-inch
casing
Water ——— Water
level level
10
inch
casing
4 inch
casing
= Well
screen
==
Bes-———=
. . . -_a;
.:.:.: —
“etet ——— Open
I = hole
— ;?—
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Geological / Geophysical Logs and Well Construction Diagrams

Site Name Swan Lake WMA - Nicollet Bay Unit
County Nicollet

Nested Well Construction

Elevation Lithology 0 Gamma 250

| \Epsoil m

N Till - Des Moines Lobe ) QC 4 Grout ~ Grout
XOA i
- Outwash - Des Moines Lobe 0? O_¢
900 —o_f 9_6- — 4-inch
: S
I STIoPL
optert — 8inch
L -2 casing ——— Water

N '()' & .'(} £5
Lake Deposits - ~ casing
Undifferentiated

Wonewoc Sandstone

768263 MN Unique 768264

Outwash - Undifferentiated [ % 5% 1 e level
= 9 2 _<> 7 level
O Oy
— 800 7;_@ .-(5_6 b — e
Outwash (NW source) SYEOTE — e
] L1 4inch screen

— 700
Eau Claire Formation
Mount Simon Sandstone D =]
- o0 | =
i S RN
ettt .
o....... :—E'—
et ———
- o:-:-:.: ;E?_ P Open
AP (B — hole
— 500 St QO
fetete . OO_ Stabilizer
- oeeel O pack
otee’e )
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Geological / Geophysical Logs and Well Construction Diagrams

Nested Well Construction

760689 MN Unique 760688

—— Grout |— Grout
RN Water
——— Water level
level .
4-inch
casing
= Well
screen
I— 4-inch
casing
—+— Open
hole

Site Name Madelia WMA
County Watonwan

Depth Elevation Lithology 0 Gamma 250

—_O i Top soil ERSEESREEE

i - Lake Deposits - Glacial Lake — =4

i Minnesota . Q& -

i Till - Des Moines Lobe ' <>/ ]

i — 1000 l A ]

B Outwash -

B Till - late or pre Wisconsin? XQA

— 100 | —

i Dakota Formation L] L

- L ooo s

B L =

T 1T

— 200 | il

= B L =

- Tunnel City Group P, —

[ s00 ] ===

— 300 |

: L Wonewoc Sandstone

B — 700

i Eau Claire Formation

— 400 |

: L 600 Mt. Simon Sandstone

— 500 |

i — 500 -

— 600 L . . . . . . R . —:

i = Igneous or metamorphic elelett =

i bedrock? LR
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Depth Elevation

— 1100

— 600

Geological / Geophysical Logs and Well Construction Diagrams

Lithology

Site Name

County

Long Lake WA

Watowan

Gamma

Topsoil

Till - Des Moines Lobe (low
shale member)

Till - Des Moines Lobe
(moderate shale member)

T

NI L ’

Outwash - Unnamed
carbonate-rich formation
(northwest source)

™

Dakota Formation
(Cretaceous, Cenomanian)
shale and sandstone

i

Albian/Cenomanian) shale
and sandstone

Unnamed unit (Cretaceous?,

Mount Simon Sandstone
(Middle Cambrian)

Saprolith (pre-Mount Simon;
Middle Cambrian?)

Nested Well Construction

1l

0|

l\‘lll

Granite/gneiss
(Neoarchean/Mesoarchean)
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