The Future of Energy and Minnesota's Water Resources

Sangwon Suh, Anne Kapuscinski, Peter Reich, Laura Schmitt Olabisi, Yiwen Chiu, Kris Johnson

Content

- Background and objectives
- Some basic facts
- Approach
- Expected results
- Q&A

Background and objectives

- Widespread public concerns on biofuel's water implication.
- Future energy environment will have significant implications on MN's water resource.
- We will bring up-to-date science and trends to better understand the future of MN's water resource under various water demand scenarios.

- Senate objectives on advanced biofuel production (billions of gallons)
- Senate objectives on conventional biofuel production (billions of gallons)
- Biofuel production statistics (billions of gallons)

3,140,000

Water balance of an ethanol plant

FIGURE 5-2 The overall water balance of a typical 50 million gallon per year corn-based Dry Mill ethanol production facility. All figures are in gallons per hour. SOURCE: Reprinted, with permission, from Courtesy of Delta-T Corp.

Source: Delta-T corp.

- 16 24 billion gallon: just how much is that?
 - Total water withdrawal in MN reached 1.4 trillion gallon in 2005 (243 bil gal ground water, 2006).
 - Over 60% of it was for power plants.
 - But ethanol plants consumes drinking quality water.
 - Total public supply of water in MN in 2007 was
 220 billion gal (DNR, 2008).
 - A non-conservative estimation is still < 10%.

Ground water use in 2006 (DNR)

- So, where is the problem?
 - Water availability is inherently a local problem.
 - The intensity of water use by ethanol plant matters.
 - Water withdrawal by a 100 million gal/year of ethanol facility is more or less equivalent to a town with 5,000 residence.

- Climate change and water availability
 - Intensification of rainfall
 - Higher run-off rate
 - Higher evapotranspiration (30 out of 37 tril gal/yr)
 - Higher evaporation rate
 - May result in water shortage depending on location-specific parameters.

Approach

Water balance approach

 Precipitation – evapotranspiration – net run-off = water budget for groundwater recharges consumptive uses

Integrating GIS mapping

Scenario development

- Ecosystem Science and Sustainability Initiative has been constructing scenarios for Minnesota resources (Minnesota 2050, sponsored by Bush Foundation).
 - Participatory process.
 - Regional scenario workshops have been held in various locations in MN involving local stakeholders.
 - In addition available trends, projections and policies will be utilized.

Expected outcomes

- Current MN water stress maps and analysis.
- Future water demand maps and analysis.
- Analysis of climate change implications on water budget in MN.
- Future water budget maps and analysis.
- Web site used as information clearinghouse.

Q & A